lkarch.org/tools/mathisfun/www.mathsisfun.com/prime-factorization.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

242 lines
9.1 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/prime-factorization.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:36 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Prime Factorization</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="style4.css" as="style">
<link rel="preload" href="main4.js" as="script">
<link rel="stylesheet" href="style4.css">
<script src="main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Prime Factorization</h1>
<h2>Prime Numbers</h2>
<p>A Prime Number is:</p>
<div class="def">
<p class="center">a whole number greater than 1 that can <b>not</b> be made by multiplying other whole numbers</p>
</div>
<p>The first few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19 and 23,
and we have a <a href="prime_numbers.html">prime number chart</a> if you need more.</p>
<p>If we <b>can</b> make it by multiplying other whole numbers it is a <b>Composite Number</b>.</p>
<p>Like this:</p>
<p class="center"><img src="numbers/images/prime-composite.svg" alt="prime composite" height="155" width="532" ></p>
<div class="center larger">2 is Prime, 3 is Prime, 4 is Composite (=2×2), 5 is Prime, and so on... </div>
<h2>Factors</h2>
<p>"Factors" are the numbers you multiply together to get
another number:</p>
<p class="center"><img src="numbers/images/factor-2x3.svg" alt="factors 2x3=6" height="70" width="181" ></p>
<h2>Prime Factorization</h2>
<div class="center80">
<p class="larger">"Prime Factorization" is finding <b>which prime numbers</b> multiply together to make the original number.</p>
</div>
<p>Here are some examples:</p>
<div class="example">
<h3>Example: What are the prime factors of 12 ?</h3>
<p>It is best to start working from the smallest prime number, which
is 2, so let's check:</p>
<p class="center larger">12 ÷ 2 = 6</p>
<p>Yes, it divided exactly by 2. We have taken the first step!</p>
<p>But 6 is not a prime number, so we need to go further. Let's try 2 again:</p>
<p class="center larger">6 ÷ 2 = 3</p>
<p>Yes, that worked also. And 3 <b>is</b> a prime number, so we have the answer:</p>
<p class="center larger"><b>12 = 2 × 2 × 3</b></p>
<p>&nbsp;</p>
<p class="larger">As you can see, <b>every factor</b> is a <b>prime number</b>, so the answer must be right.</p>
<p>&nbsp;</p>
<p>Note: <b>12 = 2 × 2 × 3</b> can also be written using <a href="exponent.html">exponents</a> as <b>12 = 2<sup>2</sup> × 3</b></p>
</div>
<div class="example">
<h3>Example: What is the prime factorization of 147 ?</h3>
<p>Can we divide 147 exactly by 2?</p>
<p class="center larger">147 ÷ 2 = 73½</p>
<p>No it can't. The answer should be a whole number, and <span class="larger">73½</span> is not.</p>
<p>Let's try the next prime
number, 3:</p>
<p class="center larger">147 ÷ 3 = 49</p>
<p>That worked, now we try factoring 49.</p>
<p>The next prime, 5, does not work. But 7 does, so we get:</p>
<p class="center larger">49 ÷ 7 = 7</p>
<p>And that is as far as we need to go, because all the factors are
prime numbers.</p>
<p class="center larger"><b>147 = 3 × 7 × 7</b></p>
<p class="center">(or <b>147 =
3 × 7<sup>2</sup></b> using exponents)</p>
</div>
<div class="example">
<h3>Example: What is the prime factorization of 17 ?</h3>
<p>Hang on ... <b>17 is a Prime Number</b>.</p>
<p>So that is as far as we can go.</p>
<p class="center"><span class="larger"><b>17 =
17</b></span></p>
</div>
<h2>Another Method</h2>
<p>We showed you how to do the factorization by starting at the smallest prime and working upwards.</p>
<p>But sometimes it is easier to break a number down into <b>any factors</b> you can ... then work those factor down to primes.</p>
<div class="example">
<h3>Example: What are the prime factors of 90 ?</h3>
<p>Break 90 into 9 × 10</p>
<ul>
<li>The prime factors of 9 are <b>3 and 3</b></li>
<li>The prime factors of 10 are <b>2 and 5</b></li>
</ul>
<p>So the prime factors of 90 are <b>3, 3, 2 and 5</b></p>
</div>
<h2>Factor Tree</h2>
<p>And a "Factor Tree" can help: find <b>any factors</b> of the number, then the factors of those numbers, etc, until we can't factor any more.</p>
<div class="example">
<h3>Example: 48</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="numbers/images/factor-tree-48.svg" alt="factor tree 48 = 2 x 2 x 2 x 2 x 3" height="253" width="229" ></p>
<p><b>48 = 8 × 6</b>, so we write down "8" and "6" below 48</p>
<p>Now we continue and factor 8 into <b>4 × 2</b></p>
<p>Then 4 into <b>2 × 2</b></p>
<p>And lastly 6 into <b>3 × 2</b></p>
<p>&nbsp;</p>
<p>We can't factor any more, so we have found the prime factors.</p>
<p>Which reveals that <b>48 = 2 × 2 × 2 × 2 × 3</b></p>
<p>(or <b>48 =
2<sup>4</sup> × 3</b> using exponents)</p>
</div>
<h2>Why find Prime Factors?</h2>
<p>A prime number can only be divided by 1 or itself, so it cannot
be factored any further!</p>
<p>Every other whole number can be broken down into prime number factors.</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><span class="large"><img src="numbers/images/blocks223.svg" alt="blocks 2 2 3" height="125" width="149" ></span></td>
<td>&nbsp;</td>
<td>
<p>It is like the Prime Numbers are the <b>basic building blocks</b> of all numbers.</p></td>
</tr>
</tbody></table>
<p>This idea can be very useful when working with big numbers, such as in Cryptography.</p>
<h2>Cryptography</h2>
<p>Cryptography is the study of secret codes. Prime Factorization is very important to people who try
to make (or break) secret codes based on numbers.</p>
<p>That is because factoring very large numbers is very hard, and can take computers a long time to do.</p>
<p>If you want to
know more, the subject is "encryption" or "cryptography".</p>
<h2>Unique</h2>
<p>And here is another thing:</p>
<p class="center"><b>There is only one (unique!) set of prime factors for any number.</b></p>
<div class="example">
<h3>Example: the prime factors of 330 are 2, 3, 5 and 11</h3>
<p class="center"><span class="large">330 = 2 × 3 × 5</span><span class="large"> × 11</span></p>
<p>There is no other possible set of prime numbers that can be multiplied to make 330.</p>
</div>
<p>In fact this idea is so important it is called the <b><a href="numbers/fundamental-theorem-arithmetic.html">Fundamental Theorem of Arithmetic</a></b>.</p>
<h2>Prime Factorization Tool</h2>
<p>OK, we have one more method ... use our <a href="numbers/prime-factorization-tool.html">Prime Factorization Tool</a> that can work out the prime factors for numbers up to
4,294,967,296.</p>
<p>&nbsp;</p>
<div class="questions">370, 1055, 1694, 1695, 1696, 1697</div>
<div class="related">
<a href="prime-composite-number.html">Prime and Composite Numbers</a>
<a href="prime_numbers.html">Prime Numbers Chart</a>
<a href="numbers/prime-factorization-tool.html">Prime Factorization Tool</a>
<a href="divisibility-rules.html">Divisibility Rules</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/prime-factorization.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:36 GMT -->
</html>