Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

288 lines
11 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/parabola.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:00 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Parabola</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style type="text/css">
.boxa {
text-align: center;
display: inline-block;
vertical-align:bottom;
margin: 0 25px 35px 0;
width: 140px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Parabola</h1>
<table style="border: 0;">
<tbody>
<tr>
<td><img src="images/parabola-soccer.svg" alt="parabola" height="274" width="344"></td>
<td>
<p>When you kick a soccer ball (or shoot an arrow, fire a missile or throw a stone) it arcs up into the air and comes down again ...</p>
<p class="large">... following the path of a parabola!</p>
<p><i>(Except for how the air affects it.)</i></p></td>
</tr>
</tbody></table>
<p>Try kicking the ball:</p>
<div class="script" style="height: 360px;">
images/parabola-ball.js?mode=ball
</div>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/parabola-distances.svg" alt="parabola equal distances" height="225" width="296"></p>
<h2>Definition</h2>
<p>A parabola is a curve where any point is at an <b>equal distance</b> from:</p>
<ul>
<li>a fixed point (the
<strong>focus</strong>
), and</li>
<li>a fixed straight line (the
<strong>directrix</strong>
)</li>
</ul>
<div style="clear:both"></div>
<h2>On Paper</h2>
<p>Get a piece of paper, draw a straight line on it, then make a big dot for the focus (not on the line!).</p>
<p>Now play around with some measurements until you have another dot that is exactly the same distance from the focus and the straight line.</p>
<p>Keep going until you have lots of little dots, then join the little dots and you will have a parabola!</p>
<p>Just like in this interactive (try moving point P):</p>
<div class="script" style="height: 320px;">
../sets/images/geom-locus.js?mode=parabola
</div>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/parabola-names.svg" alt="parabola directrix vertex focus and axis of symmetry" height="212" width="288"></p>
<h2>Names</h2>
<p>Here are the important names:</p>
<ul>
<li>the
<strong>directrix</strong>
and <b>focus</b> (explained above)</li>
<li>the <b>axis of symmetry</b> (goes through the focus, at right angles to the directrix)</li>
<li>the
<strong>vertex</strong>
(where the parabola makes its sharpest turn) is halfway between the focus and directrix.</li>
</ul>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/parabola-reflector.svg" alt="parabola rays go to focus" height="235" width="299"></p>
<h2>Reflector</h2>
<p>And a parabola has this amazing property:</p>
<p class="center larger">Any ray parallel to the axis of symmetry gets <b>reflected</b> off the surface straight <b>to the focus</b>.</p>
<div style="clear:both"></div>
<p class="center">And that explains why that dot is called the <b>focus</b> ...</p>
<p class="center">... because that's where all the rays get focused!</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/parabolic-dish.jpg" alt="parabolic dish" height="109" width="116"></p>
<p>So the parabola can be used for:</p>
<ul>
<li>satellite dishes,</li>
<li>radar dishes,</li>
<li>concentrating the sun's rays to make a hot spot,</li>
<li>the reflector on spotlights and torches,</li>
<li>etc</li>
</ul>
<p>&nbsp;</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/conic-parabola.jpg" alt="conic section parabola" height="200" width="122"></td>
<td>
<p>We also get a parabola when we <b>slice through a cone</b> (the slice must be parallel to the side of the cone).</p>
<p>So the parabola is a <a href="conic-sections.html">conic section</a> (a section of a cone).</p></td>
</tr>
</tbody></table>
<h2>Equations</h2>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/parabola-x2.svg" alt="x-squared is a parabola" height="227" width="148"></p>
<p>&nbsp;</p>
<p>The simplest equation for a parabola is <b>y = x<sup>2</sup></b></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/parabola-y2.svg" alt="x-squared is a parabola" height="160" width="208"></p>
<p>&nbsp;</p>
<p class="center">Turned on its side it becomes <b> y<sup>2</sup> = x</b></p>
<p class="center">(or <b>y = √x</b> for just the top half)</p>
<div style="clear:both"></div>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/parabola-formula.svg" alt="parabola on coordinates" height="267" width="322"></p>
<p>A little more generally:</p>
<p class="center large">y<sup>2</sup> = 4ax</p>
<p>where <b>a</b> is the distance from the origin to the focus (and also from the origin to directrix)</p>
<div style="clear:both"></div>
<div class="example">
<h3>Example:
Find the focus for the equation y<sup>2</sup>=5x</h3>
<p><br>
Converting <b>y<sup>2</sup> = 5x</b> to <b>y<sup>2</sup> = 4ax</b> form, we get <b>y<sup>2</sup> = 4 (5/4) x</b>,</p>
<p>so&nbsp;<b>a = 5/4</b>, and the focus of y<sup>2</sup>=5x is:</p>
<div class="larger">
<p class="center">F = (a, 0) = (5/4, 0)</p>
</div>
</div>
<p>The equations of parabolas in different orientations are as follows:</p>
<div class="centerfull">
<div class="boxa">
<p><img src="images/parabola-rt.svg" alt="parabola orientation right" height="123" width="112"><br>
<span class="large">y<sup>2</sup> = 4ax</span></p>
</div>
<div class="boxa">
<p><img src="images/parabola-lt.svg" alt="parabola orientation left" height="122" width="148"><br>
<span class="large">y<sup>2</sup> = 4ax</span></p>
</div>
<div class="boxa">
<p><img src="images/parabola-up.svg" alt="parabola orientation up" height="127" width="153"><br>
<span class="large">x<sup>2</sup> = 4ay</span></p>
</div>
<div class="boxa">
<p><img src="images/parabola-dn.svg" alt="parabola orientation down" height="134" width="153"><br>
<span class="large">x<sup>2</sup> = 4ay</span></p>
</div>
</div>
<h2>Measurements for a Parabolic Dish</h2>
<p>If you want to build a parabolic dish where the focus is 200 mm above the surface, what measurements do you need?</p>
<p>To make it easy to build, let's have it pointing upwards, and so we choose the <span class="large">x<sup>2</sup> = 4ay</span> equation.</p>
<p>And we want "a" to be 200, so the equation becomes:</p>
<p class="center"><span class="large">x<sup>2</sup> = 4ay = 4 × 200 × y = 800y</span></p>
<p>Rearranging so we can calculate heights:</p>
<p class="center"><span class="large">y</span> <span class="large">= x<sup>2</sup>/800</span></p>
<p>And here are some height measurements as you run along:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td rowspan="9">
<img src="images/parabola-dish-graph.svg" alt="parabolic dish graph" height="227" width="287">
</td>
<td style="text-align:right;">Distance Along ("x")</td>
<td style="text-align:right; width:100px;">Height ("y")</td>
</tr>
<tr>
<td style="text-align:right;">0 mm</td>
<td style="text-align:right; width:100px;">0.0 mm</td>
</tr>
<tr>
<td style="text-align:right;">100 mm</td>
<td style="text-align:right; width:100px;">12.5 mm</td>
</tr>
<tr>
<td style="text-align:right;">200 mm</td>
<td style="text-align:right; width:100px;">50.0 mm</td>
</tr>
<tr>
<td style="text-align:right;">300 mm</td>
<td style="text-align:right; width:100px;">112.5 mm</td>
</tr>
<tr>
<td style="text-align:right;">400 mm</td>
<td style="text-align:right; width:100px;">200.0 mm</td>
</tr>
<tr>
<td style="text-align:right;">500 mm</td>
<td style="text-align:right; width:100px;">312.5 mm</td>
</tr>
<tr>
<td style="text-align:right;">600 mm</td>
<td style="text-align:right; width:100px;">450.0 mm</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="width:100px;">&nbsp;</td>
</tr>
</tbody></table>
<p>Try to build one yourself, it could be fun! Just be careful, a reflective surface can concentrate a lot of heat at the focus.</p>
<p>&nbsp;</p>
<div class="questions">567,568,833,834, 2088, 2089, 2086, 2087, 3334, 3335</div>
<div class="related">
<a href="conic-sections.html">Conic Sections</a>
<a href="projectile-animation.html">Projectile Animation</a>
<a href="index.html">Geometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/parabola.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:02 GMT -->
</html>