Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

302 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/ellipse-perimeter.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:07 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Perimeter of Ellipse</title>
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"],["favorite","favourite"]];</script>
<style>
.bgwhite {border: 4px solid white; background-color:white;}
.tall {display:inline-block; margin: -4% 0.1% 4% 0%; transform: scaleY(2.3) translateX(20%) translateY(-5%);}
.intgl {display:inline-block; margin: -4% 0 4% -1%; transform:scaleY(1.2) translateX(20%) translateY(25%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -10px 8px;}
.intgl .symb {font: 180% Georgia;}
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
table {border-spacing: 0px;}
td, th { border: 1px solid hsla(240,100%,70%,0.3) }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Perimeter of an Ellipse</h1>
<p>On the <a href="ellipse.html">Ellipse</a> page we looked at the definition and some of the simple properties of the ellipse, but here we look at how to more accurately calculate its perimeter.</p>
<h2>Perimeter</h2>
<p>Rather strangely, the perimeter of an ellipse is <b>very difficult to calculate</b>!</p>
<p>There are many formulas, here are some interesting ones. (Also see <a href="#tool">Calculation Tool</a> below.)</p>
<h2>First Measure Your Ellipse!</h2>
<p class="center"><img src="images/ellipse-axes.svg" alt="ellipse major and minor axes" height="143" width="287"></p>
<p class="center"><b>a</b> and <b>b</b> are measured <b>from the center</b>, so they are like "radius" measures.</p>
<p>&nbsp;</p>
<h3>Approximation 1</h3>
<p>This approximation is within about 5% of the true value, so long as <b>a</b> is not more than 3 times longer than <b>b</b> (in other words, the ellipse is not too "squashed"):</p>
<div class="center large">p ≈ 2<span class="times">π</span> <span class="tall"></span><span class="intbl"><span class="overline"><em>a<sup>2</sup>+b<sup>2</sup></em><strong>2</strong></span></span></div>
<!-- p APR 2 PI SQR(a^2+b^2/2) -->
<h3>Approximation 2</h3>
<p>The famous Indian mathematician <b>Ramanujan</b> came up with this better approximation:</p>
<p class="center "><img src="images/ellipse-perim-2.gif" class="bgwhite" alt="ellipse perimeter approx pi [ 3(a+b) - sqrt((3a+b)(a+3b))]" height="41" width="310"></p>
<h3>Approximation 3</h3>
<p><b>Ramanujan</b> also came up with this one. First we calculate "h":</p>
<div class="center large">h = <span class="intbl"><em>(a b)<sup>2</sup></em><strong>(a + b)<sup>2</sup></strong></span></div>
<!-- h = (a-b)^2/(a+b)^2 -->
<p>Then use it here:</p>
<div class="center large">p ≈ <span class="times">π</span>(a+b) <span class="tall">(</span> 1 + <span class="intbl"><em>3h</em><strong>10 + <span style="font-size:110%;"></span>(43h)</strong></span> <span class="tall">)</span></div>
<!-- p APR PI(a+b) 1+3h/10+SQR(4-3h) -->
<h3>Infinite Series 1</h3>
<p>This is an <b>exact formula</b>, but it needs an "infinite series" of calculations to be exact, so in practice we still only get an approximation.</p>
<p>First we calculate <span class="large">e</span> (the "<a href="eccentricity.html">eccentricity</a>", <b>not</b> <a href="../numbers/e-eulers-number.html">Euler's number "e"</a>):</p>
<div class="center large">e = <span class="intbl"><em><span style="font-size:120%;"></span><span class="overline">a<sup>2</sup> b<sup>2</sup></span></em><strong>a</strong></span></div>
<!-- e = SQR(a^2-b^2)/a -->
<p>Then use this "infinite sum" formula:</p>
<p class="center"><img src="images/ellipse-perim-4.gif" alt="ellipse perimeter approx 2a pi [ 1 - sigma i=1 to infinity of ( (2i)!^2/(i!2^i)^4 times e^21/(2i-1))]" class="bgwhite" height="51" width="295"></p>
<p>Which may look complicated, but expands like this:</p>
<p class="center"><img src="images/ellipse-perim-5.gif" alt="ellipse perimeter approx 2a pi [ 1 - (1/2)^2 e^2 - (1x3/2x4)^2 e^4 /3 - (1x3x5/2x4x6)^2 e^6 /5 - ... ]" class="bgwhite" height="51" width="497"></p>
<p>The terms continue on infinitely, and unfortunately we must calculate a lot of terms to get a reasonably close answer.</p>
<h3>Infinite Series 2</h3>
<p>But my favorite <b>exact formula</b> (because it gives a very close answer after only a few terms) is as follows:</p>
<p>First we calculate "h":</p>
<div class="center large">h = <span class="intbl"><em>(a b)<sup>2</sup></em><strong>(a + b)<sup>2</sup></strong></span></div>
<p></p>
<p>Then use this "infinite sum" formula:</p>
<p class="center"><img src="images/ellipse-perim-7.gif" alt="ellipse perimeter approx pi(a+b) sigma n=0 to infinity of (0.5 choose n)^2 h^n " class="bgwhite" height="54" width="219"></p>
<p class="center">(Note: the <img src="images/combinations-half-n.gif" style="vertical-align:middle;" alt="combinations-half-n" class="bgwhite" height="30" width="25"> is the <a href="../combinatorics/combinations-permutations.html">Binomial Coefficient</a>
with half-integer <a href="../numbers/factorial.html">factorials</a> ... wow!)</p>
<p>It may look a bit scary, but it expands to this series of calculations:</p>
<p class="center"><img src="images/ellipse-perim-8.gif" alt="ellipse perimeter approx pi(a+b) (1 + (1/4)h + (1/64)h^2 + (1/256)h^3 + ...)" class="bgwhite" height="43" width="372"></p>
<p>The more terms we calculate, the more accurate it becomes (the next term is 25<b>h</b><sup>4</sup>/16384, which is getting quite small, and the next is 49<b>h</b><sup>5</sup>/65536, then 441<b>h</b><sup>6</sup>/1048576, then 1089<b>h</b><sup>7</sup>/4194304)</p>
<h2>The Perfect Formula</h2>
<p>There is a perfect formula using an <a href="../calculus/integration-introduction.html">integral</a>:</p>
<div class="center larger">p = 4a
<div class="intgl">
<div class="to"><span class="intbl"><span class="times">π</span>/2</span></div>
<div class="symb"></div>
<div class="from">0</div>
</div> √(1 e<sup>2</sup> sin<sup>2</sup> θ) dθ</div>
<p class="center"><i>(Note: e is the eccentricity from above)</i></p>
<p>But calculating it needs an infinite amount of terms ("Infinite Series 1" above).</p>
<h2>Comparing</h2>
<p>Just for fun, I calculate the perimeter using the three approximation formulas, and the two exact formulas (but only the <b>first four terms, including the "1"</b>, so it is still just an approximation) for selected values of <b>a</b> and <b>b</b>:</p>
<table width="100%">
<tbody>
<tr>
<td style="text-align:right;"><br>
</td>
<td>&nbsp;</td>
<td><b>Circle</b></td>
<td><br>
</td>
<td><br>
</td>
<td><br>
</td>
<td><b>Lines</b></td></tr>
<tr valign="middle">
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td><img src="images/ellipse-10-10.gif" alt="ellipse 10 10" height="56" width="58"></td>
<td><img src="images/ellipse-10-5.gif" alt="ellipse 10 5" height="30" width="58"></td>
<td><img src="images/ellipse-10-3.gif" alt="ellipse 10 3" height="20" width="58"></td>
<td><img src="images/ellipse-10-1.gif" alt="ellipse 10 1" height="8" width="58"></td>
<td><img src="images/ellipse-10-0.gif" alt="ellipse 10 0" height="5" width="57"></td>
</tr>
<tr>
<td style="text-align:right;"><b>a:</b></td>
<td>&nbsp;</td>
<td><b>10</b></td>
<td><b>10</b></td>
<td><b>10</b></td>
<td><b>10</b></td>
<td><b>10</b></td></tr>
<tr>
<td style="text-align:right;"><b>b:</b></td>
<td>&nbsp;</td>
<td><b>10</b></td>
<td><b>5</b></td>
<td><b>3</b></td>
<td><b>1</b></td>
<td><b>0</b></td></tr>
<tr>
<td style="text-align:right;"><b>Approx 1:</b></td>
<td>&nbsp;</td>
<td>62.832</td>
<td>49.673</td>
<td>46.385</td>
<td>44.65</td>
<td>44.429</td></tr>
<tr>
<td style="text-align:right;"><b>Approx 2:</b></td>
<td>&nbsp;</td>
<td>62.832</td>
<td>48.442</td>
<td>43.857</td>
<td>40.606</td>
<td>39.834</td></tr>
<tr>
<td style="text-align:right;"><b>Approx 3:</b></td>
<td>&nbsp;</td>
<td>62.832</td>
<td>48.442</td>
<td>43.859</td>
<td>40.639</td>
<td>39.984</td></tr>
<tr>
<td style="text-align:right;"><b>Series 1:</b></td>
<td>&nbsp;</td>
<td>62.832</td>
<td>48.876</td>
<td>45.174</td>
<td>43.204</td>
<td>42.951</td></tr>
<tr>
<td style="text-align:right;"><b>Series 2:</b></td>
<td>&nbsp;</td>
<td>62.832</td>
<td>48.442</td>
<td>43.859</td>
<td>40.623</td>
<td>39.884</td></tr>
<tr>
<td style="text-align:right;"><b>Exact*:</b></td>
<td>&nbsp;</td>
<td><b>20<span class="times">π</span></b></td>
<td><br>
</td>
<td><br>
</td>
<td><br>
</td>
<td><b>40</b></td></tr>
</tbody></table>
<p><br>
<b>* Exact:</b></p>
<ul>
<li>When <b>a=b</b>, the ellipse is a circle, and the perimeter is <b>2<span class="times">π</span>a</b> (62.832... in our example).</li>
<li>When <b>b=0</b> (the shape is really two lines back and forth) the perimeter is <b>4a</b> (40 in our example).</li>
</ul>
<p>They all get the perimeter of the circle correct, but only <b>Approx 2 and 3</b> and <b>Series 2</b> get close to the value of 40 for the extreme case of b=0.</p>
<h2><a id="tool"></a>Ellipse Perimeter Calculations Tool</h2>
<p>This tool does the calculations from above, but with more terms for the Series.</p>
<div class="script" style="height: 360px;">
images/ellipse-perim.js
</div>
<p>&nbsp;</p>
<div class="related">
<a href="ellipse.html">Ellipse</a>
<a href="index.html">Geometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/ellipse-perimeter.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:10 GMT -->
</html>