lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/solids-revolution-disk-washer.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

323 lines
16 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/solids-revolution-disk-washer.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:15 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Solids of Revolution by Disks and Washers</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<style>
.intgl {display:inline-block; margin: -4% 0.6% 4% -1.8%; transform: translateX(20%) translateY(35%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -5px 8px;}
.intgl .symb {font: 180% Georgia; }
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
.sigma {display:inline-block; margin: -4% 0.6% 4% -1%; transform: translateX(20%) translateY(35%);}
.sigma .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -12px 0;}
.sigma .symb {font: 200% Georgia; transform: translateY(16%); }
.sigma .symb:before { content: "\03A3";}
.sigma .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Solids of Revolution by Disks</h1>
<p>We can have a function, like this one:</p>
<p class="center"><img src="images/solid-rev-1.svg" alt="Solids of Revolution y=f(x)" height="89" width="316" ></p>
<p>And revolve it around the x-axis like this:</p>
<p class="center"><img src="images/solid-rev-2.svg" alt="Solids of Revolution y=f(x)" height="135" width="316" ></p>
<p>To find its <b>volume</b> we can <b>add up a series of disks</b>:</p>
<p class="center"><img src="images/solid-rev-3.svg" alt="Solids of Revolution y=f(x)" height="135" width="316" ></p>
<p>Each disk's face is a circle:</p>
<p class="center large"><img src="images/solid-rev-4.svg" alt="Solids of Revolution y=f(x)" height="135" width="316" ></p>
<p>The <a href="../geometry/circle-area.html">area of a circle</a> is <span class="times">π</span> times radius squared:</p>
<p class="center large">A = <span class="times">π</span> r<sup>2</sup></p>
<p>And the radius <b>r</b> is the value of the function at that point <b>f(x)</b>, so:</p>
<p class="center large">A = <span class="times">π</span> f(x)<sup>2</sup></p>
<p>And the <b>volume</b> is found by summing all those disks using <a href="integration-introduction.html">Integration</a>:</p>
<div class="center larger">Volume =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div> <span class="times">π</span> f(x)<sup>2</sup> dx</div>
<!-- Volume = INT{a, b} PI f(x)^2 dx -->
<p class="center">And that is our formula for <b>Solids of Revolution by Disks</b></p>
<p>In other words, to find the volume of revolution of a function f(x): <b>integrate pi times the square of the function</b>.</p>
<div class="example">
<h3>Example: A Cone</h3>
<p>Take the very simple function <b>y=x</b> between 0 and b</p>
<p class="center"><img src="images/solid-rev-cone-1.svg" alt="Solids of Revolution y=f(x)" height="90" width="140" ></p>
<p>Rotate it around the x-axis ... and we have a cone!</p>
<p class="center"><img src="images/solid-rev-cone-2.svg" alt="Solids of Revolution y=f(x)" height="139" width="141" ></p>
<p>The radius of any disk is the function f(x), which in our case is simply <b>x</b></p>
<p class="center"><img src="images/solid-rev-cone-3.svg" alt="Solids of Revolution y=f(x)" height="139" width="141" ></p>
<p>What is its volume? <b>Integrate pi times the square of the function x</b> :</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div><span class="times">π</span> x<sup>2</sup> dx</div>
<!-- Volume = INT{0, b} PI x^2 dx -->
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/pie-outside.jpg" alt="pie outside" height="93" width="150" ></p>
<p>First, let's have our <b>pi outside</b> (yum).</p>
<p>Seriously, it is OK to bring a constant outside the integral:</p>
<div style="clear:both"></div>
<div class="center large">Volume = <span class="times">π</span>
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div>x<sup>2</sup> dx</div>
<!-- Volume = PI INT{0, b} x^2 dx -->
<p>Using <a href="integration-rules.html">Integration Rules</a> we find the integral of x<sup>2</sup> is: <b><span class="intbl"><em>x<sup>3</sup></em><strong>3</strong></span> + C</b></p>
<p>To calculate this <a href="integration-definite.html">definite integral</a>, we calculate the value of that function for <b>b</b> and for <b>0</b>&nbsp;and subtract, like this:</p>
<p class="center larger">Volume = <span class="times"><b>π</b></span> (<span class="intbl"><em>b<sup>3</sup></em><strong>3</strong></span> <span class="intbl"><em>0<sup>3</sup></em><strong>3</strong></span>)</p>
<p class="center larger">= <span class="times">π</span> <span class="intbl"><em>b<sup>3</sup></em><strong>3</strong></span></p>
</div>
<div class="fun"><p>Compare that result with the more general volume of a <a href="../geometry/cone.html">cone</a>:</p>
<p class="center"><span class="larger">Volume = <span class="intbl">
<em>1</em>
<strong>3</strong>
</span> <span class="times"> π</span> r<sup>2</sup> h</span></p>
<p>When both <b>r=b</b> and <b>h=b</b> we get:</p>
<p class="center"><span class="larger">Volume = <span class="intbl">
<em>1</em>
<strong>3</strong>
</span> <span class="times"> π</span> b<sup>3</sup></span></p>
<p>As an interesting exercise, why not try to work out the more general case of any value of r and h yourself?</p></div>
<p>&nbsp;</p>
<p>We can also rotate about other lines, such as x = 1</p>
<div class="example">
<h3>Example: Our Cone, But About x = 1</h3>
<p>So we have this:</p>
<p class="center"><img src="images/solid-rev-conem1-1.svg" alt="Solids of Revolution y=f(x)" height="136" width="163" ></p>
<p>Rotated about x = 1 it looks like this:</p>
<p class="center"><img src="images/solid-rev-conem1-2.svg" alt="Solids of Revolution y=f(x)" height="169" width="168" ><br>
The cone is now bigger, with its sharp end cut off (a <i>truncated cone</i>)</p>
<p>Let's draw in a sample disk so we can work out what to do:</p>
<p class="center"><img src="images/solid-rev-conem1-3.svg" alt="Solids of Revolution y=f(x)" height="169" width="168" ></p>
<p>OK. Now what is the radius? It is our function <b>y=x</b> plus an extra <b>1</b>:</p>
<p class="center large">y =&nbsp;x + 1</p>
<p>Then <b>integrate pi times the square of that function</b>:</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div><span class="times">π</span> (x+1)<sup>2</sup> dx</div>
<!-- Volume = INT{0, b}PI (x+1)^2 dx -->
<p><b>Pi outside</b>, and expand (x+1)<sup>2</sup> to x<sup>2</sup>+2x+1 :</p>
<div class="center large">Volume = <span class="times">π</span>
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div>(x<sup>2</sup> + 2x + 1) dx</div>
<!-- Volume = PI INT{0, b}(x^2 + 2x + 1) dx -->
<p>Using <a href="integration-rules.html">Integration Rules</a> we find the integral of x<sup>2</sup>+2x+1 is <b>x<sup>3</sup>/3 + x<sup>2</sup> + x + C</b></p>
<p>And going between <b>0</b> and <b>b</b> we get:</p>
<p class="center larger">Volume = <span class="times">π</span> (b<sup>3</sup>/3+b<sup>2</sup>+b (0<sup>3</sup>/3+0<sup>2</sup>+0))</p>
<p class="center larger">= <span class="times">π</span> (b<sup>3</sup>/3+b<sup>2</sup>+b)</p>
</div>
<p>Now for another type of function:</p>
<div class="example">
<h3>Example: The Square Function</h3>
<p>Take <b>y = x<sup>2</sup></b> between x=0.6 and x=1.6</p>
<p class="center"><img src="images/solid-rev-x2-1.svg" alt="Solids of Revolution y=x^2" height="155" width="140" ></p>
<p>Rotate it around the x-axis:</p>
<p class="center"><img src="images/solid-rev-x2-2.svg" alt="Solids of Revolution y=x^2" height="261" width="146" ></p>
<p>What is its volume? <b>Integrate pi times the square of x<sup>2</sup></b>:</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">1.6</div>
<div class="symb"></div>
<div class="from">0.6</div>
</div><span class="times">π</span> (x<sup>2</sup>)<sup>2</sup> dx</div>
<!-- Volume = INT{0.6, 1.6}PI (x^2 )^2 dx -->
<p>Simplify by having pi outside, and also (x<sup>2</sup>)<sup>2</sup> = x<sup>4</sup> :</p>
<div class="center large">Volume = <span class="times">π</span>
<div class="intgl">
<div class="to">1.6</div>
<div class="symb"></div>
<div class="from">0.6</div>
</div>x<sup>4</sup> dx</div>
<!-- Volume = PI INT{0.6, 1.6}x^4 dx -->
<p>The integral of x<sup>4</sup> is <b>x<sup>5</sup>/5 + C</b></p>
<p>And going between 0.6 and 1.6 we get:</p>
<p class="center">Volume = <span class="times">π</span> ( 1.6<sup>5</sup>/5 0.6<sup>5</sup>/5 )</p>
<p class="center"><font face="Times New Roman, Times, serif" size="+1"></font>6.54</p>
</div>
<p>Can you rotate <b>y = x<sup>2</sup></b> about x = 1 ?</p>
<h2>In summary:</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/pie-outside.jpg" alt="pie outside" height="93" width="150" ></p>
<ul>
<li>Have pi outside</li>
<li>Integrate the <b>function squared</b></li>
<li>Subtract the lower end from the higher end</li>
</ul>
<p>&nbsp;</p>
<h2>About The Y Axis</h2>
<p>We can also rotate about the Y axis:</p>
<div class="example">
<h3>Example: The Square Function</h3>
<p>Take y=x<sup>2</sup>, but this time using the <b>y-axis</b> between y=0.4 and y=1.4</p>
<p class="center"><img src="images/solid-rev-y-1.svg" alt="Solids of Revolution about Y" height="145" width="161" ></p>
<p>Rotate it around the <b>y-axis</b>:</p>
<p class="center"><img src="images/solid-rev-y-2.svg" alt="Solids of Revolution about Y" height="146" width="196" ></p>
<p>And now we want to integrate in the y direction!</p>
<p>So we want something like <b>x =&nbsp;g(y)</b> instead of y = f(x). In this case it is:</p>
<p class="center large">x = √(y)</p>
<p>Now <b>integrate pi times the square of √(y)<sup>2</sup></b> (and dx is now <b>dy</b>):</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">1.4</div>
<div class="symb"></div>
<div class="from">0.4</div>
</div><span class="times">π</span> √(y)<sup>2</sup> dy</div>
<!-- Volume = INT{0.4, 1.4} PI SQR(y)^2 dy -->
<p>Simplify with pi outside, and √(y)<sup>2</sup> = y :</p>
<div class="center large">Volume = <span class="times">π</span>
<div class="intgl">
<div class="to">1.4</div>
<div class="symb"></div>
<div class="from">0.4</div>
</div>y dy</div>
<!-- Volume = PI INT{0.4, 1.4} y dy -->
<p>The integral of y is y<sup>2</sup>/2</p>
<p>And lastly, going between 0.4 and 1.4 we get:</p>
<p class="center">Volume = <span class="times">π</span> ( 1.4<sup>2</sup>/2 0.4<sup>2</sup>/2 )</p>
<p class="center"><b>2.83...</b></p>
</div>
<p>&nbsp;</p>
<h2>Washer Method</h2>
<p class="center"><img src="../geometry/images/washers.jpg" alt="Washers (various)" height="117" width="300" ><br>
Washers: Disks with Holes</p>
<p>What if we want the volume <b>between two functions</b>?</p>
<div class="example">
<h3>Example: Volume between the functions <b>y=x</b> and <b>y=x<sup>3</sup></b> from x=0 to 1</h3>
<p>These are the functions:</p>
<p class="center"><img src="images/solid-rev-x-x3-1.svg" alt="Solids of Revolution between y=x and y=x^3" height="155" width="140" ></p>
<p>Rotated around the x-axis:</p>
<p class="center"><img src="images/solid-rev-x-x3-2.svg" alt="Solids of Revolution between y=x and y=x^3" height="219" width="207" ></p>
<p>The disks are now "washers":</p>
<p class="center"><img src="images/solid-rev-x-x3-3.svg" alt="Solids of Revolution between y=x and y=x^3" height="219" width="207" ></p>
<p>And they have the area of an <a href="../geometry/annulus.html">annulus</a>:</p>
<p class="center"><img src="../geometry/images/annulus.svg" alt="annulus r and R" height="164" width="164" ><br>
In our case <b>R = x</b> and <b>r = x<sup>3</sup></b></p>
<p>In effect this is the <b>same as the disk method</b>, except we subtract one disk from another.</p>
<p>And so our integration looks like:</p>
<div class="center large">Volume =
<div class="intgl">
<div class="to">1</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span class="times">π</span> (x)<sup>2</sup> <span class="times">π</span> (x<sup>3</sup>)<sup>2</sup> dx</div>
<!-- Volume = INT{0, 1} PI (x)^2 - PI (x^3 )^2 dx -->
<p>Have pi outside (on both functions) and simplify (x<sup>3</sup>)<sup>2</sup> = x<sup>6</sup>:</p>
<div class="center large">Volume = <span class="times">π</span>
<div class="intgl">
<div class="to">1</div>
<div class="symb"></div>
<div class="from">0</div>
</div> x<sup>2</sup> x<sup>6</sup> dx</div>
<!-- Volume = PI INT{0, 1} x^2 &minus; x^6 dx -->
<p>The integral of x<sup>2</sup> is x<sup>3</sup>/3 and the integral of x<sup>6</sup> is x<sup>7</sup>/7</p>
<p>And so, going between 0 and 1 we get:</p>
<p class="center">Volume = <span class="times">π</span> [ (1<sup>3</sup>/3 1<sup>7</sup>/7 ) (00) ]</p>
<p class="center">≈ 0.598...</p>
</div>
<p>So the&nbsp;Washer method is like the Disk method, but with the inner disk subtracted from the outer disk.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="related">
<a href="solids-revolution-shells.html">Solids of Revolution by Shells</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/solids-revolution-disk-washer.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:19 GMT -->
</html>