Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

152 lines
6.4 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/product-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:02 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Product Rule</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Product Rule</h1>
<p>The product rule tells us the <a href="derivatives-introduction.html">derivative</a> of two functions <b>f</b> and <b>g</b> that are multiplied together:</p>
<p class="center large">(fg) = fg + gf</p>
<p>(The little mark <span class="hilite"></span> means "derivative of".)</p>
<div class="example">
<h3>Example: What is the derivative of cos(x)sin(x) ?</h3>
<p>We have two functions <b>cos(x)</b> and <b>sin(x)</b> multiplied together, so let's use the Product Rule:</p>
<p class="center large">(fg) = f g + f g</p>
<p>Which in our case becomes:</p>
<p class="center large">(cos(x)sin(x)) = cos(x) sin(x) + cos(x) sin(x)</p>
We know (from <a href="derivatives-rules.html">Derivative Rules</a>) that:
<ul>
<li>sin(x) = cos(x)</li>
<li>cos(x) = sin(x)</li>
</ul>
<p>So we can substitute:</p>
<p class="center large">(cos(x)sin(x)) = cos(x) cos(x) + sin(x) sin(x)</p>
<p>Which simplifies to:</p>
<p class="center large">(cos(x)sin(x)) = cos<sup>2</sup>(x) sin<sup>2</sup>(x)</p>
<p class="center larger"></p>
Answer: the derivative of cos(x)sin(x) = <b>cos<sup>2</sup>(x) sin<sup>2</sup>(x)</b>
</div>
<h2>Why Does It Work?</h2>
<p>When we multiply two functions f(x) and g(x) the result is the <b>area fg</b>:</p>
<p class="center"><img src="images/product-rule.svg" alt="product rule" height="285" width="307"></p>
<p>The derivative is the rate of change, and when <b>x</b> changes a little then both <b>f</b> and <b>g</b> will also change a little (by Δf and Δg). In this example they both increase making the area bigger.</p>
<p>How much bigger?</p>
<p class="center large">Increase in area = Δ(fg) = fΔg + ΔfΔg + gΔf</p>
<p>As the change in x heads towards zero, the "ΔfΔg" term also heads to zero, and we get:</p>
<p class="center large">(fg) = fg + gf</p>
<h2>Alternative Notation</h2>
<p>An alternative way of writing it (called Leibniz Notation) is:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(uv) = u<span class="intbl"><em>dv</em><strong>dx</strong></span> + v<span class="intbl"><em>du</em><strong>dx</strong></span> <span class="intbl"><strong></strong></span><span class="intbl"><strong></strong></span></p>
<!-- d/dx (uv) = du/dx v + u dv/dx -->
<p>Here is our example from before in Leibniz Notation:</p>
<div class="example">
<h3>Example: What is the derivative of cos(x)sin(x) ?</h3>
<p>This:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(uv) = u<span class="intbl"><em>dv</em><strong>dx</strong></span> + v<span class="intbl"><em>du</em><strong>dx</strong></span> <span class="intbl"><strong></strong></span></p>
<p>Becomes this:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(cos(x)sin(x)) = cos(x)<span class="intbl"><em>d(sin(x))</em><strong>dx</strong></span> + sin(x)<span class="intbl"><em>d(cos(x))</em><strong>dx</strong></span><span class="intbl"></span></p>
From <a href="derivatives-rules.html">Derivative Rules</a>:
<ul>
<li><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = cos(x)</li>
<li><span class="intbl"><em>d</em><strong>dx</strong></span>cos(x) = sin(x)</li>
</ul>&nbsp;So:
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(cos(x)sin(x)) = cos(x) cos(x) + sin(x) sin(x)</p>
<p>Which simplifies to:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(cos(x)sin(x)) = cos<sup>2</sup>(x) sin<sup>2</sup>(x)</p>
</div>
<h2>Three Functions</h2>
<p>For three functions multiplied together we can use:</p>
<p class="center large">(fgh) =&nbsp; fgh + fgh&nbsp; + fgh</p>
<p>&nbsp;</p>
<div class="related">
<a href="derivatives-rules.html">Derivative Rules</a>
<a href="derivatives-introduction.html">Introduction to Derivatives</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/product-rule.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:02 GMT -->
</html>