lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/differential-equations.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

298 lines
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:23 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Differential Equations - Introduction</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Differential Equations</h1>
<p>A <span class="center">Differential Equation is a</span>n equation with a <a href="../sets/function.html">function</a> and one or more of its <a href="derivatives-introduction.html">derivatives</a>:</p>
<p class="center"><img src="images/diff-eq-1.svg" alt="differential equation y + dy/dx = 5x"><br>
Example: an equation with the function <b>y</b> and its
derivative<b>
<span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span>
</b> &nbsp;</p>
<h2>Solving</h2>
<p>We <b>solve</b> it when we discover <b>the function</b> <b>y</b> (or set of functions y).</p>
<p>There are many "tricks" to solving Differential Equations (<i>if</i> they can be solved!).</p>
<p>But first: why?</p>
<h2>Why Are Differential Equations Useful?</h2>
<p>In our world things change, and <b>describing how they change</b> often ends up as a Differential Equation:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/rabbits.jpg" alt="rabbits" height="147" width="200"></p>
<h3>Example: Rabbits!</h3>
<p>The more rabbits we have the more baby rabbits we get.</p>
<p>Then those rabbits grow up and have babies too! The population will grow faster and faster.</p>
<p>The important parts of this are:</p>
<ul>
<li>the population <b>N</b> at any time <b>t</b></li>
<li>the growth rate <b>r</b></li>
<li>the population's rate of change <b><span class="intbl"><em>dN</em><strong>dt</strong></span></b></li>
</ul>
<p>Think of <b><span class="intbl"><em>dN</em><strong>dt</strong></span></b> as "how much the population changes as time changes, for any moment in time".</p>
<p><br></p>
<p>Let us imagine the growth rate <b>r</b> is <b>0.01</b> new rabbits per week <b>for every current rabbit.</b></p>
<p>When the population is <b>1000</b>, the rate of change <b><span class="intbl"><em>dN</em><strong>dt</strong></span></b><span class="center"></span> is then 1000×0.01 = <b>10 new rabbits</b> per week.</p>
<p>But that is only true at a <b>specific time</b>, and doesn't include that the population is constantly increasing. The bigger the population, the more new rabbits we get!</p>
<p>When the population is <b>2000</b> we get 2000×0.01 = <b>20 new rabbits</b> per week, etc.</p>
<p>So it is better to say the rate of change (at any instant) is the growth rate times the population at that instant:</p>
<p class="center large"><span class="intbl"><em>dN</em><strong>dt</strong></span> = rN</p>
<p>And that is a <b>Differential Equation</b>, because it has a function <b>N(t)</b> and its derivative.</p>
<p>&nbsp;</p>
<p>And how powerful mathematics is! That short equation says "the rate of change of the population over time equals the growth rate times the population".</p>
</div>
<p><span class="center">Differential</span> Equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.</p>
<h2>What To Do With Them?</h2>
<p>On its own<span class="center">, a Differential</span> Equation is a wonderful way to express something, but is hard to use.</p>
<p>So we try to <b>solve</b> them by turning the <span class="center">Differential</span> Equation into a simpler equation without the differential bits, so we can do calculations, make graphs, predict the future, and so on.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="../money/images/coin-stack-add.jpg" alt="coin stack add" height="140" width="106"></p>
<h3>Example: Compound Interest</h3>
<p>Money earns interest. The interest can be calculated at fixed times, such as yearly, monthly, etc. and added to the original amount.</p>
<p>This is called <a href="../money/compound-interest.html">compound interest</a>.</p>
<p>But when it is compounded <b>continuously</b> then at any time the interest gets added in proportion to the current value of the loan (or investment).</p>
<p>And as the loan grows it earns more interest.</p>
<p>Using <b>t</b> for time, <b>r</b> for the interest rate and <b>V</b> for the current value of the loan:</p>
<p class="center large"><span class="intbl"><em>dV</em><strong>dt</strong></span> = rV</p>
<p>&nbsp;</p>
<p><i>And here is a cool thing: it is the same as the equation we got with the Rabbits! It just has different letters. So mathematics shows us these two things behave the same.</i></p>
<p>&nbsp;</p>
<p><b>Solving</b></p>
<p>The <span class="center">Differential</span> Equation says it well, but is hard to use.</p>
<p>But don't worry, it can be solved (using a special method called <span class="center"><a href="separation-variables.html">Separation of Variables</a></span>) and results in:</p>
<p class="center larger">V = Pe<sup>rt</sup></p>
<p>Where <b>P</b> is the Principal (the original loan), and e is <a href="../numbers/e-eulers-number.html">Euler's Number</a>.</p>
<p>So a continuously compounded loan of $1,000 for 2 years at an interest rate of 10% becomes:</p>
<div class="tbl">
<div class="row"><span class="left">V =</span><span class="right"> 1000 × e<sup>(2×0.1)</sup></span></div>
<div class="row"><span class="left">V =</span><span class="right"> 1000 × 1.22140...</span></div>
<div class="row"><span class="left">V =</span><span class="right"> $1,221.40 (to the nearest cent)</span></div>
</div>
</div>
<p>So <span class="center">Differential</span> Equations are great at describing things, but need to be solved to be useful.</p>
<h2>More Examples of Differential Equations</h2>
<h3>The Verhulst Equation</h3>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/rabbits.jpg" alt="rabbits" height="147" width="200"></p>
<h3>Example: Rabbits Again!</h3>
<p>Remember our growth Differential Equation:</p>
<p class="center large"><span class="intbl"><em>dN</em><strong>dt</strong></span> = rN</p>
<div style="clear:both"></div>
<p>Well, that growth can't go on forever as they will soon run out of available food.</p>
<p>So let's improve it by including:</p>
<ul>
<li>the maximum population that the food can support <b>k</b></li>
</ul>
<p>A guy called Verhulst figured it all out and got this Differential Equation:</p>
<p class="center large"><span class="intbl"><em>dN</em><strong>dt</strong></span> = rN(1N/k)</p>
<p class="center"><i><b>The Verhulst Equation</b></i></p>
</div>
<h3>Simple Harmonic Motion</h3>
<p>In Physics, Simple Harmonic Motion is a type of periodic motion where the restoring force is directly proportional to the displacement. An example of this is given by a mass on a spring.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/spring-mass.svg" alt="spring mass"></p>
<h3>Example: Spring and Weight</h3>
<p>A spring gets a weight attached to it:</p>
<ul>
<li>the weight gets pulled down due to gravity,</li>
<li>as the spring stretches its tension increases,</li>
<li>the weight slows down,</li>
<li>then the spring's tension pulls it back up,</li>
<li>then it falls back down, up and down, again and again.</li>
</ul>
<p>Describe this with mathematics!</p>
<p>&nbsp;</p>
<p><b>The weight</b> is pulled down by gravity, and we know from <a href="../physics/force.html">Newton's Second Law</a> that force equals mass times acceleration:</p>
<p class="center"><b>F</b> = m<b>a</b></p>
<p>And <a href="../measure/metric-acceleration.html">acceleration</a> is the <a href="second-derivative.html">second derivative</a> of position with respect to time, so:</p>
<p class="center large"><b>F</b> = m <span class="intbl"><em>d<sup>2</sup>x</em><strong>dt<sup>2</sup>
</strong></span></p>
<p>&nbsp;</p>
<p><b>The spring</b> pulls it back up based on how stretched it is (<b>k</b> is the spring's stiffness, and <b>x</b> is how stretched it is): <b>F = -kx</b></p>
<p>The two forces are always equal:</p>
<p class="center large">m <span class="intbl"><em>d<sup>2</sup>x</em><strong>dt<sup>2</sup>
</strong></span> = kx</p>
<p>We have a differential equation!</p>
<p>It has a function <b>x(t)</b>, and it's second derivative<b> <span class="intbl">
<em>d<sup>2</sup>x</em>
<strong>dt<sup>2</sup></strong>
</span></b></p>
<p>&nbsp;</p>
<p><i>Note: we haven't included "damping" (the slowing down of the bounces due to friction), which is a little more complicated, but you can play with it here (press <b>play</b>):</i></p>
<iframe src="../physics/ispring.html" scrolling="no" style="width:362px; height:392px; overflow:hidden; margin:auto; display:block; border: none;"></iframe>
</div><p>&nbsp;</p>
<p><b>Creating</b> a differential equation is the first major step. But we also need to <b>solve</b> it to discover how, for example, the spring bounces up and down over time.</p>
<h2>Classify Before Trying To Solve</h2>
<p>So how do we <b>solve</b> them?</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../measure/images/walking.jpg" alt="walking" height="200" width="101"></p>
<p>It isn't always easy!</p>
<p>Over the years wise people have worked out <b>special methods</b> to solve <b>some types</b> of Differential Equations.</p>
<p>So we need to know <b>what type</b> of Differential Equation&nbsp;it is first.</p>
<p><i>It is like travel: different kinds of transport have solved how to get to certain places.</i> <i>Is it near, so we can just walk? Is there a road so we can take a car? Or is it in another galaxy and we just can't get there yet?</i></p>
<div style="clear:both"></div>
<p>So let us first <b>classify the Differential Equation</b>.</p>
<p>&nbsp;</p>
<h3>Ordinary or Partial</h3>
<p>The first major grouping is:</p>
<ul>
<li>"Ordinary Differential Equations" (ODEs) have <b>a single independent variable</b> (like <b>y</b>)</li>
<li>"Partial Differential Equations" (PDEs) have two or more independent variables.</li>
</ul>
<p>We are learning about <b>Ordinary Differential Equations</b> here!</p>
<p>&nbsp;</p>
<h3>Order and Degree</h3>
<p>Next we work out the Order and the Degree:</p>
<p class="center"><img src="images/diff-eq-2.svg" alt="differential equation order 2, degree 3"></p>
<h3>Order</h3>
<p>The Order is the <b>highest derivative</b> (is it a first derivative? a <a href="second-derivative.html">second derivative</a>? etc):</p>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + y<sup>2</sup> = 5x</p>
<p>It has only the first derivative
<span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> , so is "First Order"</p>
</div>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + xy = sin(x)</p>
<p>This has a second derivative
<span class="intbl">
<em>d<sup>2</sup>y</em>
<strong>dx<sup>2</sup></strong>
</span> , so is "Order 2"</p>
</div>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>d<sup>3</sup>y</em><strong>dx<sup>3</sup></strong></span> + x<span class="intbl"><em>dy</em><strong>dx</strong></span> + y = e<sup>x</sup></p>
<p>This has a third derivative
<span class="intbl">
<em>d<sup>3</sup>y</em>
<strong>dx<sup>3</sup></strong>
</span> which outranks the
<span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> , so is "Order 3"</p>
</div>
<h3>Degree</h3>
<p>The <a href="../algebra/degree-expression.html">degree</a> is the exponent of the highest derivative.</p>
<div class="example">
<h3>Example:</h3>
<p class="center large">(<span class="intbl"><em>dy</em><strong>dx</strong></span>)<sup>2</sup> + y = 5x<sup>2</sup></p>
<p>The highest derivative is just dy/dx, and it has an exponent of 2, so this is "Second Degree"</p>
<p>In fact it is a <b>First Order Second Degree Ordinary Differential Equation</b></p>
</div>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>d<sup>3</sup>y</em><strong>dx<sup>3</sup></strong></span> + (<span class="intbl"><em>dy</em><strong>dx</strong></span>)<sup>2</sup> + y = 5x<sup>2</sup></p>
<p>The highest derivative is d<sup>3</sup>y/dx<sup>3</sup>, but it has no exponent (well actually an exponent of 1 which is not shown), so this is "First Degree".</p>
<p>(The exponent of 2 on dy/dx does not count, as it is not the highest derivative).</p>
<p>So it is a <b>Third Order First Degree Ordinary Differential Equation</b></p>
</div>
<p>&nbsp;</p>
<p class="center80">Be careful not to confuse order with degree. Some people use the word order when they mean degree!</p>
<h3>Linear</h3>
<p>It is <b>Linear</b> when the variable (and its derivatives) has no exponent or other function put on it.</p>
<p class="center dotpoint">So <b>no</b> y<sup>2</sup>, y<sup>3</sup>, √y, sin(y), ln(y) etc, <b><br>just plain y</b> (or whatever the variable is)</p>
<p>More formally a <b>Linear Differential Equation</b> is in the form:</p>
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + P(x)y = Q(x)</p>
<h2>Solving</h2>
<p>OK, we have classified our Differential Equation, the next step is solving.</p>
<p>And we have a <a href="differential-equations-solution-guide.html">Differential Equations Solution Guide</a> to help you.</p>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(9399, 9400, 9401, 9402, 9403, 9404, 9405, 9406, 9407, 9408);</script>&nbsp;
</div>
<div class="related">
<a href="derivatives-introduction.html">Derivatives</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:24 GMT -->
</html>