new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
194 lines
8.3 KiB
HTML
194 lines
8.3 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/concave-up-down-convex.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:47 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Concave Upward and Downward</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js"></script>
|
||
<script>document.write(gTagHTML())</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Concave Upward and Downward</h1>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td> </td>
|
||
<td> </td>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><b>Concave upward</b> is when the slope increases:</td>
|
||
<td> </td>
|
||
<td><img src="images/concave-upward.svg" alt="concave upward slope increases"></td>
|
||
</tr>
|
||
<tr>
|
||
<td><b>Concave downward</b> is when the slope decreases:</td>
|
||
<td> </td>
|
||
<td><img src="images/concave-downward.svg" alt="concave downward slope decreases"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p><i>What about when the slope stays the same (straight line)? It could be both! See <a href="#slope">footnote</a>.</i></p>
|
||
<p>Here are some more examples:</p>
|
||
<p class="center"><img src="images/concave-examples.svg" alt="concave upward and downward examples"></p>
|
||
<div class="words">
|
||
<p><b>Concave Upward</b> is also called <b>Convex</b>, or sometimes <b>Convex Downward</b></p>
|
||
<p><b>Concave Downward</b> is also called <b>Concave</b>, or sometimes <b>Convex Upward</b></p>
|
||
</div>
|
||
|
||
<h2>Finding where ...</h2>
|
||
<p>Usually our task is to find <b>where</b> a curve is concave upward or concave downward:</p>
|
||
<p class="center"><br>
|
||
<img src="images/concave-sections.svg" alt="concave sections"></p>
|
||
<h2>Definition</h2>
|
||
|
||
<p>A line drawn between <b>any</b> two points on the curve won't cross over the curve:</p>
|
||
<p class="center"><img src="images/concave-upward-yes-no.svg" alt="concave upward yes and no examples"></p>
|
||
|
||
<p>Let's make a formula for that!</p>
|
||
<p>First, the line: take any two different values <b>a</b> and<b> b</b> (in the interval we are looking at):</p>
|
||
<p class="center"><img src="images/concave-upward-ab.svg" alt="concave upward between a and b"></p>
|
||
<p>Then "slide" between <b>a</b> and <b>b</b> using a value <b>t</b> (which is from 0 to 1):</p>
|
||
<p class="center larger">x = ta + (1−t)b</p>
|
||
<ul>
|
||
<li>When <b>t=0</b> we get <b>x = 0a+1b = b</b></li>
|
||
<li>When <b>t=1</b> we get <b>x = 1a+0b = a</b></li>
|
||
<li>When t is between 0 and 1 we get values between <b>a</b> and <b>b</b></li>
|
||
</ul>
|
||
<p>Now work out the heights at that x-value:</p>
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="images/concave-line-t.svg" alt="concave line t"></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>When <b>x = ta + (1−t)b</b>:</p>
|
||
<ul>
|
||
<li>The curve is at <b>y = f( ta + (1−t)b )</b></li>
|
||
<li>The line is at <b>y = tf(a) + (1−t)f(b)</b></li>
|
||
</ul></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>And (for <b>concave upward</b>) the line should not be below the curve:</p>
|
||
<p class="center"><img src="images/concave-upward-formula.svg" alt="concave upwnward f( ta + (1-t)b ) <= tf(a) + (1-t)f(b)"></p>
|
||
<p>For <b>concave downward</b> the line should not be above the curve (<b>≤</b> becomes <b>≥</b>):</p>
|
||
<p class="center"><img src="images/concave-downward-formula.svg" alt="concave downward f( ta + (1-t)b ) >= tf(a) + (1-t)f(b)"></p>
|
||
<p>And those are the actual definitions of <b>concave upward</b> and <b>concave downward</b>.</p>
|
||
<h2>Remembering</h2>
|
||
<p>Which way is which? Think:</p>
|
||
<p class="center"><img src="images/concave-up-cup.svg" alt="concave up: cup"><br>
|
||
<b>C</b>oncave <b>Up</b>wards = <b>CUP</b></p>
|
||
<h2>Calculus</h2>
|
||
<p><a href="derivatives-introduction.html">Derivatives</a> can help! The derivative of a function gives the slope.</p>
|
||
<ul>
|
||
<li>When the slope continually <b>increases</b>, the function is <b>concave upward</b>.</li>
|
||
<li>When the slope continually <b>decreases</b>, the function is <b>concave downward</b>.</li>
|
||
</ul>
|
||
|
||
<p>Taking the <a href="second-derivative.html">second derivative</a> actually tells us if the slope continually increases or decreases.</p>
|
||
<ul>
|
||
<li>When the second derivative is <b>positive</b>, the function is <b>concave upward</b>.</li>
|
||
<li>When the second derivative is<b> negative</b>, the function is <b>concave downward</b>.</li>
|
||
</ul>
|
||
<div class="example">
|
||
<h3>Example: the function x<sup>2</sup></h3>
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/x2-concave-upward.svg" alt="x^2 concave upward"></p>
|
||
<p>Its derivative is 2x (see <a href="derivatives-rules.html">Derivative Rules</a>)</p>
|
||
<div class="so">2x continually increases, so the function is <b>concave upward</b>. </div>
|
||
<p>Its second derivative is 2</p>
|
||
<div class="so">2 is <b>positive</b>, so the function is <b>concave upward</b>.</div>
|
||
<p>Both give the correct answer.</p></div>
|
||
<p> </p>
|
||
<div class="example">
|
||
|
||
<h3>Example: f(x) = 5x<sup>3</sup> + 2x<sup>2</sup> − 3x</h3>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/5x3-2x2-3x-concave.svg" alt="5x^3 + 2x^2 - 3x inflection point"></p>
|
||
<p>Let's work out the second derivative:</p>
|
||
<ul>
|
||
<li>The derivative is <b>f'(x) = 15x<sup>2</sup> + 4x − 3</b> (using <a href="derivatives-rules.html">Power Rule</a>)</li>
|
||
<li>The second derivative is <b>f''(x) = 30x + 4</b> (using <a href="derivatives-rules.html">Power Rule</a>)</li>
|
||
</ul>
|
||
<p> </p>
|
||
<p>And <b>30x + 4</b> is negative up to x = −4/30 = −2/15, and positive from there onwards. So:</p>
|
||
<div class="so"> f(x) is <b>concave downward</b> up to x = −2/15</div>
|
||
<div class="so">f(x) is <b>concave upward</b> from x = −2/15 on</div>
|
||
<p> </p>
|
||
<p>Note: The point where it changes is called an <a href="inflection-points.html">inflection point</a>.</p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="center80">
|
||
<h3><a name="slope"></a>Footnote: Slope Stays the Same</h3>
|
||
<p>What about when the slope stays the same (straight line)?</p>
|
||
<p>A straight line is acceptable for <b>concave upward</b> or <b>concave downward</b>.</p>
|
||
<p>But when we use the special terms <b>strictly concave upward</b> or <b>strictly concave downward</b> then a straight line is <b>not</b> OK.</p>
|
||
<div class="example">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/2x-1.svg" alt="2x+1"></p>
|
||
<h3>Example: y = 2x + 1</h3>
|
||
<p><b>2x + 1</b> is a straight line.</p>
|
||
<p> </p>
|
||
<p>It is <b>concave upward</b>.<br>
|
||
It is also <b>concave downward</b>.</p>
|
||
<p>It is not <b>strictly concave upward</b>.<br>
|
||
And it is not <b>strictly concave downward</b>.</p>
|
||
</div>
|
||
|
||
</div>
|
||
<p> </p>
|
||
|
||
<div class="related">
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/concave-up-down-convex.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:49 GMT -->
|
||
</html> |