new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
288 lines
11 KiB
HTML
288 lines
11 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/associative-commutative-distributive.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:45:16 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Commutative, Associative and Distributive Laws</title>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="style4.css" as="style">
|
||
<link rel="preload" href="main4.js" as="script">
|
||
<link rel="stylesheet" href="style4.css">
|
||
<script src="main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Commutative, Associative and Distributive Laws</h1>
|
||
|
||
<p class="center"><i>Wow! What a mouthful of words! But the ideas are simple.</i></p>
|
||
<div class="video">H1zsWdHC_V8</div>
|
||
<h2 id="titlecomm">Commutative Laws</h2>
|
||
|
||
|
||
<p>The "Commutative Laws" say we can <b>swap numbers</b> over and still get the same answer ...</p>
|
||
<p>... when we <b>add</b>:</p>
|
||
<div class="center80">
|
||
<p class="center large">a + b<b> = </b> b + a</p>
|
||
</div>
|
||
<h3 align="center">Example:</h3>
|
||
<p class="center"><img src="numbers/images/commutative-add.svg" alt="Commutative Law Addition" height="80" width="365"></p>
|
||
<p> </p>
|
||
<p>... or when we <b>multiply</b>:</p>
|
||
<div class="center80">
|
||
<p class="center large">a × b<b> = </b> b × a</p>
|
||
</div>
|
||
<h3 align="center">Example:</h3>
|
||
<p class="center"><img src="numbers/images/commutative-multiply.svg" alt="Commutative Law multiplication" height="101" width="188"></p>
|
||
<p> </p>
|
||
<a id="qc"></a>
|
||
<h3>Percentages too!</h3>
|
||
<p>Because <span class="large">a × b<b> = </b> b × a</span> it is also true that:</p>
|
||
<p class="larger center">a% of b<b> = </b> b% of a</p>
|
||
<div class="example">
|
||
<h3>Example: what is 8% of 50 ?</h3>
|
||
<p class="center">8% of 50 = 50% of 8<br>
|
||
= 4</p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="words">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="numbers/images/commute.jpg" alt="commute" height="127" width="300"></p>
|
||
<p>Why <b>"commutative</b>" ... ?</p>
|
||
<p>Because the numbers can travel back and forth like a <b>commuter</b>.</p>
|
||
<div style="clear:both"></div>
|
||
</div>
|
||
<div class="questions">4591, 4599, 4615, 4639, 4647, 4592, 4600, 4616</div>
|
||
<p> </p>
|
||
<div class="video">KBfnkUGeMvI</div>
|
||
<h2 id="titleassoc">Associative Laws</h2>
|
||
|
||
|
||
<p>The "Associative Laws" say that it doesn't matter how we group the numbers (i.e. which we calculate first) ...</p>
|
||
<p>... when we <b>add</b>:</p>
|
||
<div class="center80">
|
||
<p class="center large">(a + b) + c<b> = </b> a + (b + c)</p>
|
||
</div>
|
||
<p class="center"><img src="numbers/images/associative-add.svg" alt="Associative Law addition" height="68" width="405"></p>
|
||
<p>... or when we <b>multiply</b>:</p>
|
||
<div class="center80">
|
||
<p class="center large">(a × b) × c<b> = </b> a × (b × c)</p>
|
||
</div>
|
||
<h3 align="center"><img src="numbers/images/associative-multiply.svg" alt="Associative Law multiplication" height="107" width="265"></h3>
|
||
<h3>Examples:</h3>
|
||
<div class="simple">
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td>This:</td>
|
||
<td nowrap="nowrap"><b>(2 + 4)</b> + 5<b> = 6</b> + 5<b> = 11</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Has the same answer as this:</td>
|
||
<td nowrap="nowrap">2 +<b> (4 + 5)</b> = 2 +<b> 9 = 11</b></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div><br>
|
||
<div class="simple">
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td>This:</td>
|
||
<td nowrap="nowrap"><b>(3 × 4)</b> × 5 = <b>12</b> × 5 = <b>60</b></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Has the same answer as this:</td>
|
||
<td nowrap="nowrap">3 ×<b> (4 × 5)</b> = 3 × <b>20</b> = <b>60</b></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<h3>Uses:</h3>
|
||
<p>Sometimes it is easier to add or multiply in a different order:</p>
|
||
<div class="simple">
|
||
<div class="example">
|
||
<h3>What is 19 + 36 + 4?</h3>
|
||
<p class="center">19 + 36 + 4 = 19 + <b>(36 + 4)</b> <br>
|
||
= 19 + <b>40</b> = 59</p>
|
||
</div>
|
||
<a id="qa"></a>
|
||
<p>Or to rearrange a little:</p>
|
||
<div class="simple">
|
||
<div class="example">
|
||
<h3>What is 2 × 16 × 5?</h3>
|
||
<p class="center">2 × 16 × 5<b> = (2 × 5)</b> × 16<b> <br>
|
||
= 10</b> × 16 = 160</p>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p> </p>
|
||
<div class="questions">4603, 4610, 4627, 4631, 4643, 4654, 4606, 4612</div>
|
||
<p> </p>
|
||
|
||
<div class="video">0v-G6OwcKmU</div>
|
||
<h2 id="titledist">Distributive Law</h2>
|
||
|
||
|
||
<p>The "Distributive Law" is the BEST one of all, but needs careful attention.</p>
|
||
<p>This is what it lets us do:</p>
|
||
<p class="center"><img src="numbers/images/distributive-law.svg" alt="Distributive Law" height="99" width="330"></p>
|
||
<p class="center">3 lots of <b>(2+4)</b> is the same as <b>3 lots of 2</b> plus <b>3 lots of 4</b></p>
|
||
<p>So, the <b>3×</b> can be "distributed" across the <b>2+4</b>, into <b>3×2</b> and <b>3×4</b></p>
|
||
<p>And we write it like this:</p>
|
||
<div class="center80">
|
||
<p class="center larger">a × (b + c) = a × b + a × c</p>
|
||
</div>
|
||
|
||
<p>Try the calculations yourself:</p>
|
||
<ul>
|
||
<li>3 × (<b>2 + 4</b>) = 3 × <b>6</b> = <span class="hide">18</span></li>
|
||
<li>3×2 + 3×4 = 6 + 12 = <span class="hide">18</span></li>
|
||
</ul>
|
||
<p>Either way gets the same answer.</p>
|
||
<p>In English we can say:</p>
|
||
<div class="center80">
|
||
<p>We get the same answer when we:</p>
|
||
<ul>
|
||
<li>multiply a number by a <b>group of numbers added together</b>, or</li>
|
||
<li>do each <b>multiply</b> separately then <b>add</b> them</li>
|
||
</ul>
|
||
</div>
|
||
<p> </p>
|
||
<h3>Uses:</h3>
|
||
<p>Sometimes it is easier to break up a difficult multiplication:</p>
|
||
<div class="example">
|
||
<h3>Example: What is 6 × 204 ?</h3>
|
||
<p class="center">6 × 204 = 6×200 + 6×4 <br>
|
||
= 1,200 + 24 <br>
|
||
= 1,224</p>
|
||
</div>
|
||
<p>Or to combine:</p>
|
||
<div class="example">
|
||
<h3>Example: What is 16 × 6 + 16 × 4?</h3>
|
||
<p class="center">16 × 6 + 16 × 4 = 16 × <b>(6+4)</b> <br>
|
||
= 16 × <b>10</b> <br>
|
||
= 160</p>
|
||
</div>
|
||
<p>We can use it in subtraction too:</p>
|
||
<div class="example">
|
||
<h3>Example: 26×3 - 24×3</h3>
|
||
<div class="center">26×3 - 24×3 = <b>(26 - 24)</b> × 3 <br>
|
||
= 2 × 3 <br>
|
||
= 6 </div>
|
||
</div>
|
||
<a id="qd"></a>
|
||
<p>We could use it for a long list of additions, too:</p>
|
||
<div class="example">
|
||
<h3>Example: 6×7 + 2×7 + 3×7 + 5×7 + 4×7</h3>
|
||
<p class="center"><b>6</b>×7 + <b>2</b>×7 + <b>3</b>×7 + <b>5</b>×7 + <b>4</b>×7<br>
|
||
= <b>(6+2+3+5+4)</b> × 7<br>
|
||
= <b>20</b> × 7<br>
|
||
= <b>140</b></p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="questions">5656, 5657, 5658, 5659, 5660, 5661, 3172</div>
|
||
<h2>And those are the Laws . . .</h2>
|
||
<h2> . . . but don't go too far!</h2>
|
||
<p>The Commutative Law does <b>not</b> work for subtraction or division:</p>
|
||
<div class="example">
|
||
<h3>Example:</h3>
|
||
<ul>
|
||
<li>12 / 3 = <b>4</b>, but</li>
|
||
<li>3 / 12 = <b>¼</b></li>
|
||
</ul>
|
||
</div>
|
||
<p> The Associative Law does <b>not</b> work for subtraction or division:</p>
|
||
<div class="example">
|
||
<h3>Example:</h3>
|
||
<ul>
|
||
<li>(9 – 4) – 3 = 5 – 3 = <b>2</b>, but</li>
|
||
<li>9 – (4 – 3) = 9 – 1 = <b>8</b></li>
|
||
</ul>
|
||
</div>
|
||
<p> The Distributive Law does <b>not</b> work for division:</p>
|
||
<div class="example">
|
||
<h3>Example:</h3>
|
||
<ul>
|
||
<li>24 / (4 + 8) = 24 / 12 = <b>2</b>, but</li>
|
||
<li>24 / 4 + 24 / 8 = 6 + 3 = <b>9</b></li>
|
||
</ul>
|
||
</div>
|
||
<h2>Summary</h2>
|
||
<table width="100%" cellpadding="6" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td class="larger" width="33%" valign="top">Commutative Laws:</td>
|
||
<td width="67%"><span class="large">a + b<b> = </b> b + a<br>
|
||
a × b<b> = </b> b × a</span></td>
|
||
</tr>
|
||
<tr>
|
||
<td class="larger" valign="top">Associative Laws:</td>
|
||
<td><span class="large">(a + b) + c<b> = </b> a + (b + c)<br>
|
||
(a × b) × c<b> = </b> a × (b × c)</span></td>
|
||
</tr>
|
||
<tr>
|
||
<td class="larger" valign="top">Distributive Law:</td>
|
||
<td class="large">a × (b + c) = a × b + a × c</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p> </p>
|
||
<div class="activity"> <a href="activity/associative-commutative-distributive.html">Activity: Commutative, Associative and Distributive</a></div>
|
||
|
||
<div class="related">
|
||
<a href="numbers/index.html">Numbers Index</a>
|
||
<a href="algebra/index.html">Algebra Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/associative-commutative-distributive.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:45:17 GMT -->
|
||
</html> |