new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
233 lines
10 KiB
HTML
233 lines
10 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/vectors-dot-product.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:57 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Dot Product</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Dot Product</h1>
|
||
|
||
<p>A <a href="vectors.html">vector</a> has <b>magnitude</b> (how long it is) and <b>direction</b>:</p>
|
||
<p class="center"><img src="images/vector-mag-dir.svg" alt="vector magnitude and direction" height="137" width="267"></p>
|
||
<p>Here are two vectors:</p>
|
||
<p class="center"><img src="images/vectors.svg" alt="vectors" height="" width=""></p>
|
||
<p>They can be <b>multiplied</b> using the "<b>Dot Product</b>" (also see <a href="vectors-cross-product.html">Cross Product</a>).</p>
|
||
|
||
|
||
<h2>Calculating</h2>
|
||
|
||
<p>The Dot Product is written using a central dot:</p>
|
||
<p class="center"><span class="large"><b>a</b> · <b>b</b></span><br>
|
||
This means the Dot Product of <b>a</b> and <b>b</b></p>
|
||
<p>We can calculate the Dot Product of two vectors this way:</p>
|
||
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/dot-product-1.svg" alt="dot product magnitudes and angle" height="" width=""></p>
|
||
<p class="center"><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × cos(θ)</p>
|
||
<p>Where:<br>
|
||
|<b>a</b>| is the magnitude (length) of vector <b>a</b><br>
|
||
|<b>b</b>| is the magnitude (length) of vector <b>b<br>
|
||
</b> θ is the angle between <b>a</b> and <b>b</b></p>
|
||
<p>So we multiply the length of <b>a</b> times the length of <b>b</b>, then multiply by the cosine of the angle between <b>a</b> and <b>b</b></p>
|
||
<p> </p>
|
||
<p>OR we can calculate it this way:</p>
|
||
|
||
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/dot-product-2.svg" alt="dot product components"></p>
|
||
<p class="center"><b>a · b</b> = a<sub>x</sub> × b<sub>x</sub> + a<sub>y</sub> × b<sub>y</sub></p>
|
||
<p>So we multiply the x's, multiply the y's, then add.</p>
|
||
<div style="clear:both"></div>
|
||
<p>Both methods work!</p>
|
||
<p>And the result is a <b>number</b> (called a "scalar" to show it is not a vector).</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Calculate the dot product of vectors <b>a</b> and <b>b</b>:</h3>
|
||
<p class="center"><img src="images/dot-product-ex1.gif" alt="dot product example" height="202" width="214"></p>
|
||
<p><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × cos(θ)</p>
|
||
<div class="so"><b>a · b</b> = 10 × 13 × cos(59.5°) </div>
|
||
<div class="so"><b>a · b</b> = 10 × 13 × 0.5075...</div>
|
||
<div class="so"><b>a · b</b> = 65.98... = 66 (rounded)</div>
|
||
<p>OR we can calculate it this way:</p>
|
||
<p><b>a · b</b> = a<sub>x</sub> × b<sub>x</sub> + a<sub>y</sub> × b<sub>y</sub></p>
|
||
<div class="so"><b>a · b</b> = -6 × 5 + 8 × 12</div>
|
||
<div class="so"><b>a · b</b> = -30 + 96</div>
|
||
<div class="so"><b>a · b</b> = 66</div>
|
||
<p>Both methods came up with the same result (after rounding)</p>
|
||
<p>Also note that we used <b>minus 6</b> for a<sub>x</sub> (it is heading in the negative x-direction)</p>
|
||
</div>
|
||
<p>Note: you can use the <a href="vector-calculator.html">Vector Calculator</a>
|
||
to help you.</p>
|
||
|
||
|
||
<h2>Why cos(θ) ?</h2>
|
||
|
||
<p>OK, to multiply two vectors it makes sense to multiply their lengths together <i><b>but only when they point in the same direction</b></i><b>.</b></p>
|
||
<p>So we make one "point in the same direction" as the other by multiplying by cos(θ):</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td style="text-align:center;"> <img src="images/dot-product-a-cos.svg" alt="dot product |a| cos(theta)" height="131" width="144"></td>
|
||
<td style="text-align:center; width:50px;"> </td>
|
||
<td style="text-align:center;"><img src="images/dot-product-light.svg" alt="dot product shine light" height="245" width="176"></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">We take the component of <b>a</b><br>
|
||
that lies alongside <b>b</b></td>
|
||
<td style="text-align:center; width:50px;"> </td>
|
||
<td style="text-align:center;">Like shining a light to see<br>
|
||
where the shadow lies</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>THEN we multiply !</p>
|
||
|
||
<table width="100%" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p>It works exactly the same if we "projected" <b>b</b> alongside <b>a</b> then multiplied:</p>
|
||
<p>Because it doesn't matter which order we do the multiplication:</p>
|
||
<p class="center">|<b>a</b>| × <span class="hilite">|<b>b</b>| × cos(θ)</span> = <span class="hilite">|<b>a</b>| × cos(θ)</span> × |<b>b</b>|</p>
|
||
</td>
|
||
<td><img src="images/dot-product-b-cos.gif" alt="dot product |b| cos(theta)" height="136" width="183"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
|
||
<h2>Right Angles</h2>
|
||
|
||
<p>When two vectors are at right angles to each other the dot product is <b>zero</b>.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: calculate the Dot Product for:</h3>
|
||
<p class="center"><img src="images/dot-product-right-angle.gif" alt="dot product right angle" height="104" width="164"></p>
|
||
<p><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × cos(θ)</p>
|
||
<div class="so"><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × cos(90°) </div>
|
||
<div class="so"><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × 0 </div>
|
||
<div class="so"><b>a · b</b> = 0</div>
|
||
<p>or we can calculate it this way:</p>
|
||
<p><b>a · b</b> = a<sub>x</sub> × b<sub>x</sub> + a<sub>y</sub> × b<sub>y</sub></p>
|
||
<div class="so"><b>a · b</b> = -12 × 12 + 16 × 9</div>
|
||
<div class="so"><b>a · b</b> = -144 + 144</div>
|
||
<div class="so"><b>a · b</b> = 0</div>
|
||
</div>
|
||
<p>This can be a handy way to find out if two vectors are at right angles.</p>
|
||
|
||
|
||
<h2>Three or More Dimensions</h2>
|
||
|
||
<p>This all works fine in 3 (or more) dimensions, too.</p>
|
||
<p>And can actually be very useful!</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Sam has measured the end-points of two poles, and wants to know <b>the angle between them</b>:</h3>
|
||
<p class="center"><img src="images/dot-product-ex2.gif" alt="dot product 3d" height="261" width="317"></p>
|
||
<p>We have 3 dimensions, so don't forget the z-components:</p>
|
||
<p><b>a · b</b> = a<sub>x</sub> × b<sub>x</sub> + a<sub>y</sub> × b<sub>y</sub> + a<sub>z</sub> × b<sub>z</sub></p>
|
||
<div class="so"><b>a · b</b> = 9 × 4 + 2 × 8 + 7 × 10</div>
|
||
<div class="so"><b>a · b</b> = 36 + 16 + 70 </div>
|
||
<div class="so"><b>a · b</b> = 122</div>
|
||
<p> </p>
|
||
<p>Now for the other formula:</p>
|
||
<p><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × cos(θ)</p>
|
||
<p>But what is |<b>a</b>| ? It is the magnitude, or length, of the vector <b>a</b>. We can use <a href="../pythagoras.html">Pythagoras</a>:</p>
|
||
<ul>
|
||
<li>|<b>a</b>| = √(4<sup>2</sup> + 8<sup>2</sup> + 10<sup>2</sup>)</li>
|
||
<li>|<b>a</b>| = √(16 + 64 + 100)</li>
|
||
<li>|<b>a</b>| = √180</li>
|
||
</ul>
|
||
<p>Likewise for |<b>b</b>|:</p>
|
||
<ul>
|
||
<li>|<b>b</b>| = √(9<sup>2</sup> + 2<sup>2</sup> + 7<sup>2</sup>)</li>
|
||
<li>|<b>b</b>| = √(81 + 4 + 49)</li>
|
||
<li>|<b>b</b>| = √134</li>
|
||
</ul>
|
||
<p>And we know from the calculation above that <b>a · b</b> = 122, so:</p>
|
||
<p><b>a · b</b> = |<b>a</b>| × |<b>b</b>| × cos(θ)</p>
|
||
<div class="so">122 = √180 × √134 × cos(θ) </div>
|
||
<div class="so">cos(θ) = 122 / (√180 × √134)</div>
|
||
<div class="so">cos(θ) = 0.7855...</div>
|
||
<div class="so">θ = cos<sup>-1</sup>(0.7855...) = 38.2...°</div>
|
||
<p>Done!</p>
|
||
</div>
|
||
<p>I tried a calculation like that once, but worked all in angles and distances ... it was very hard, involved lots of trigonometry, and my brain hurt. The method above is much easier.</p>
|
||
|
||
|
||
<h2>Cross Product</h2>
|
||
|
||
<p>The Dot Product gives a <b>scalar</b> (ordinary number) answer, and is sometimes called the <b>scalar product</b>.</p>
|
||
<p>But there is also the <a href="vectors-cross-product.html">Cross Product</a> which gives a <b>vector</b> as an answer, and is sometimes called the <b>vector product</b>.</p>
|
||
<p> </p>
|
||
<div class="questions">3036, 3037, 3030, 3031, 3032, 3033, 3034, 3035, 3903, 3904</div>
|
||
|
||
<div class="related">
|
||
<a href="vectors.html">Vectors</a>
|
||
<a href="vector-calculator.html">Vector Calculator</a>
|
||
<a href="index.html">Algebra Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/vectors-dot-product.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:59 GMT -->
|
||
</html> |