Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

350 lines
16 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/trigonometry.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:09 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Trigonometry</title>
<script>reSpell=[["center","centre"]];</script>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Introduction to Trigonometry</h1>
<p class="center"><i><b>Trigonometry</b> (from Greek trigonon "triangle" + metron "measure")</i></p>
<p class="center">Want to learn Trigonometry? Here is a quick summary.<br>
Follow the links for more, or go to <a href="trigonometry-index.html">Trigonometry Index</a></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/triangle-sss.svg" alt="triangle" height="131" width="220"></td>
<td><span class="larger"><b>Trigonometry</b> ... is all about <b>triangles.</b> </span></td>
</tr>
</tbody></table>
<p>Trigonometry helps us find angles and distances, and is used a lot in science, engineering, video games, and more!</p>
<h2>Right-Angled Triangle</h2>
<p>The triangle of most interest is the <a href="../right_angle_triangle.html">right-angled triangle</a>. The right angle is shown by the little box in the corner:</p>
<p class="center"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="190" width="326"></p>
<p>Another angle is often labeled <span class="large">θ</span>, and the three sides are then called:</p>
<ul>
<li><b>Adjacent</b>: adjacent (next to) the angle <span class="large">θ</span></li>
<li><b>Opposite</b>: opposite the angle <span class="large">θ</span></li>
<li>and the longest side is the <b>Hypotenuse</b></li>
</ul><p>&nbsp;</p>
<div class="fun">
<h3>Why a Right-Angled Triangle?</h3>
<p>Why is this triangle so important?</p>
<p>Imagine we can measure along and up but want to know the direct distance and angle:</p>
<p class="center"><img src="images/trig-why-dist.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="163" width="189"></p>
<p>Trigonometry can find that missing angle and distance.</p>
<p>Or maybe we have a distance and angle and need to "plot the dot" along and up:</p>
<p class="center"><img src="images/trig-why-screen.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="149" width="238"></p>
<p>Questions like these are common in engineering, computer animation and more.</p>
<p>And trigonometry gives the answers!</p>
</div>
<h2>Sine, Cosine and Tangent</h2>
<p>The main functions in trigonometry are <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a></p>
<p class="center large">They are simply one side of a right-angled triangle divided by another.</p>
<p>For any angle "<b><i>θ</i></b>":</p>
<p class="center"><img src="images/sin-cos-tan.svg" alt="sin=opposite/hypotenuse cos=adjacent/hypotenuse tan=opposite/adjacent" height="181" width="468"></p>
<p class="center"><i>(Sine, Cosine and Tangent are often abbreviated to <span class="large">sin, cos and tan</span>.)</i></p>
<p>&nbsp;</p>
<div class="example">
<h3>Example: What is the sine of 35°?</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../geometry/images/triangle-28-40-49.gif" alt="triangle 2.8 4.0 4.9 has 35 degree angle" height="117" width="159"></p>
<p>Using this triangle (lengths are only to one decimal place):</p>
<p class="center large">sin(35°) = <span class="intbl"><em>Opposite</em><strong>Hypotenuse</strong></span> = <span class="intbl"><em>2.8</em><strong>4.9</strong></span> = <b>0.57...</b></p>
<div style="clear:both"></div>
</div>
<p>The triangle could be larger, smaller or turned around, but <b>that angle will always have that ratio</b>.</p>
<p>Calculators have sin, cos and tan to help us, so let's see how to use them:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;">&nbsp;</p> <span style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-45-sin.svg" alt="right angle triangle 45 degrees, hypotenuse 20" height="138" width="185"></span>
<h3>Example: How Tall is The Tree?</h3>
<p>We can't reach the top of the tree, so we walk away and measure an angle (using a protractor) and distance (using a laser):</p>
<ul>
<li>We know the <b>Hypotenuse</b></li>
<li>And we want to know the <b>Opposite</b></li>
</ul>
<p><b>Sine</b> is the ratio of <b>Opposite / Hypotenuse</b>:</p>
<p class="center large">sin(45°) = <span class="intbl">
<em>Opposite</em>
<strong>Hypotenuse</strong>
</span></p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/calculator-sin-cos-tan.jpg" alt="calculator-sin-cos-tan" height="75" width="118"></p>
<p>Get a calculator, type in "45", then the "sin" key:</p>
<p class="center large">sin(45°) = <b>0.7071...</b></p>
<p>&nbsp;</p>
<p class="def">What does the <b>0.7071...</b> mean? It is the ratio of the side lengths, so the Opposite is <i>about 0.7071</i> times as long as the Hypotenuse.</p>
<p>&nbsp;</p>
<p>We can now put <b>0.7071...</b> in place of sin(45°):</p>
<p class="center large"><b>0.7071...</b> = <span class="intbl"> <em>Opposite</em> <strong>Hypotenuse</strong> </span></p>
<p>And we also know the hypotenuse is <b>20</b>:</p>
<p class="center large">0.7071... = <span class="intbl"> <em>Opposite</em> <strong><b>20</b></strong></span></p>
<p>To solve, first multiply both sides by 20:</p>
<p class="center large">20 × 0.7071... = Opposite</p>
<p>Finally:</p>
<p class="center large">Opposite = <b>14.14m</b> (to 2 decimals)</p>
</div>
When you gain more experience you can do it quickly like this:
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-45-sin.svg" alt="right angle triangle 45 degrees, hypotenuse 20" height="138" width="185"></p>
<h3>Example: How Tall is The Tree?</h3>
<div style="clear:both">
</div>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">sin(45°) = <span class="intbl">
<em>Opposite</em>
<strong>Hypotenuse</strong>
</span></span></div>
<div class="row"><span class="left">We know:</span><span class="right">0.7071... = <span class="intbl">
<em>Opposite</em>
<strong>20</strong>
</span></span></div>
<div class="row"><span class="left">Swap sides:</span><span class="right"><span class="intbl">
<em>Opposite</em>
<strong>20</strong>
</span> = 0.7071...</span></div>
<div class="row"><span class="left">Multiply both sides by <b>20</b>: </span><span class="right">Opposite = 0.7071... × 20</span></div>
<div class="row"><span class="left">Calculate:</span><span class="right"><span class="large">Opposite = <b>14.14</b><br>
(to 2 decimals)</span></span></div>
</div>
<p class="larger">The tree is 14.14m tall</p>
</div>
<h2>Try Sin Cos and Tan</h2>
<p>Play with this for a while (move the mouse around) and get familiar with values of sine, cosine and tangent for different angles, such as 0°, 30°, 45°, 60° and 90°.</p>
<div class="script" style="height: 560px;">
../algebra/images/circle-triangle.js
</div>
<p>Also try 120°, 135°, 180°, 240°, 270° etc, and notice that positions can be <b>positive or negative</b> by the rules of <a href="../data/cartesian-coordinates.html">Cartesian coordinates</a>, so the sine, cosine and tangent change between positive and negative also.</p>
<p>So <b>trigonometry is also about <a href="../geometry/circle.html">circles</a></b>!</p>
<div style="clear:both"></div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../geometry/images/unit-circle.svg" alt="unit circle" height="222" width="242"></p>
<h2>Unit Circle</h2>
<p>What you just played with is the <a href="../geometry/unit-circle.html">Unit Circle</a>.</p>
<p>It is a circle with a radius of 1 with its center at 0.</p>
<p>Because the radius is 1, we can directly measure sine, cosine and tangent.</p>
<p>Here we see the sine function being made by the unit circle:</p>
<div class="script" style="height: 230px;">
images/circle-sine.js
</div>
<p><i>Note: you can see the nice <a href="trig-sin-cos-tan-graphs.html">graphs made by sine, cosine and tangent</a>.</i></p>
<h2>Degrees and Radians</h2>
<p>Angles can be in <a href="../geometry/degrees.html">Degrees</a> or <a href="../geometry/radians.html">Radians</a>. Here are some examples:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th width="200">Angle</th>
<th width="100">Degrees</th>
<th width="100">Radians</th>
</tr>
<tr style="text-align:center;">
<td style="width:200px;"><img src="../geometry/images/symbol-right-angle.gif" alt="right angle" height="28" width="28">Right Angle&nbsp;</td>
<td style="width:100px;">90°</td>
<td style="width:100px;"><span class="times">π</span>/2</td>
</tr>
<tr style="text-align:center;">
<td style="width:200px;">__ Straight Angle</td>
<td style="width:100px;">180°</td>
<td style="width:100px;"><span class="times">π</span></td>
</tr>
<tr style="text-align:center;">
<td style="width:200px;"><img src="../geometry/images/symbol-circle.gif" alt="right angle" height="28" width="28">&nbsp;Full Rotation</td>
<td style="width:100px;">360°</td>
<td style="width:100px;">2<span class="times">π</span></td>
</tr>
</tbody></table>
</div>
<h2>Repeating Pattern</h2>
<p>Because the angle is <b>rotating around and around the circle</b> the Sine, Cosine and Tangent functions <b>repeat once every full rotation</b> (see <a href="amplitude-period-frequency-phase-shift.html">Amplitude, Period, Phase Shift and Frequency</a>).</p>
<p class="center"><img src="images/cosine-repeating.svg" alt="cosine repeates every 360 degrees" height="156" width="404"></p>
<p>When we want to calculate the function for an angle larger than a full rotation of 360° (2<span class="times">π</span> radians) we subtract as many full rotations as needed to bring it back below 360° (2<span class="times">π</span> radians):</p>
<div class="example">
<h3>Example: what is the cosine of 370°?</h3>
<p>370° is greater than 360° so let us subtract 360°</p>
<p class="center">370° 360° = 10°</p>
<p class="larger">cos(370°) = cos(10°) = <b>0.985</b> (to 3 decimal places)</p>
</div>
<p>And when the angle is less than zero, just add full rotations.</p>
<div class="example">
<h3>Example: what is the sine of 3 radians?</h3>
<p>3 is less than 0<span class="times"></span> so let us add 2<span class="times">π</span> radians</p>
<p class="center">3 + 2<span class="times">π</span> = 3 + 6.283... = 3.283... rad<span class="times"></span>ians</p>
<p class="larger">sin(3) = sin(3.283...) = <b>0.141</b> (to 3 decimal places)</p>
</div>
<h2>Solving Triangles</h2>
<p>Trigonometry is also useful for general triangles, not just right-angled ones .</p>
<p>It helps us in <a href="trig-solving-triangles.html">Solving Triangles</a>. "Solving" means finding missing sides and angles.</p>
<div class="example">
<h3>Example: Find the Missing Angle "C"</h3>
<p class="center"><img src="images/trig-asaex1.gif" alt="trig ASA example" height="125" width="175"></p>
<p>Angle <b>C</b> can be found using <a href="../proof180deg.html">angles of a triangle add to 180°</a>:</p>
<p class="center larger">So C = 180° 76° 34° = <b>70°</b></p>
</div>
<p>We can also find missing side lengths. The general rule is:</p>
<p class="center"><b>When we know any 3 of the sides or angles we can find the other 3</b><br>
(except for the three angles case)</p>
<p class="center large">See <a href="trig-solving-triangles.html">Solving Triangles</a> for more details.</p>
<h2>Other Functions (Cotangent, Secant, Cosecant)</h2>
<p>Similar to Sine, Cosine and Tangent, there are three other <b>trigonometric functions</b> which are made by dividing one side by another:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="190" width="326"></p>
<table align="center" cellpadding="5" border="0">
<tbody>
<tr>
<td>
<div align="right">Cosecant Function:</div>
</td>
<td><b>csc(<i>θ</i>) = Hypotenuse&nbsp;/&nbsp;Opposite</b></td>
</tr>
<tr>
<td>
<div align="right">Secant Function:</div>
</td>
<td><b>sec(<i>θ</i>) = Hypotenuse&nbsp;/&nbsp;Adjacent</b></td>
</tr>
<tr>
<td>
<div align="right">Cotangent Function:</div>
</td>
<td><b>cot(<i>θ</i>) = Adjacent&nbsp;/&nbsp;Opposite</b></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<h2>Trigonometric and Triangle Identities</h2>
<p>And as you get better at Trigonometry you can learn these:</p>
<table align="center" width="80%" border="0">
<tbody>
<tr>
<td style="text-align:center;"><img src="../geometry/images/triangle-abc.svg" alt="right angled triangle" height="109" width="189"></td>
<td>
<p>The <a href="trigonometric-identities.html">Trigonometric Identities</a> are equations that are true for all <b>right-angled triangles</b>.</p>
</td>
</tr>
<tr>
<td style="text-align:center;"><img src="images/triangle-sss.svg" alt="triangle" height="131" width="220"></td>
<td>
<p>The <a href="triangle-identities.html">Triangle Identities</a> are equations that are true for all triangles (they don't have to have a right angle).</p>
</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<p class="center">Enjoy becoming a triangle (and circle) expert!</p>
<p class="center">&nbsp;</p>
<div class="related">
<a href="trigonometry-index.html">Trigonometry Index</a>
<a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a>
<a href="../geometry/unit-circle.html">Unit Circle</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/trigonometry.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:12 GMT -->
</html>