new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
184 lines
9.6 KiB
HTML
184 lines
9.6 KiB
HTML
<!doctype html>
|
|
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:22 GMT -->
|
|
<head>
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Inverse of a Matrix using Elementary Row Operations (Gauss-Jordan)</title>
|
|
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
|
|
|
|
|
<style>
|
|
.boxa {
|
|
text-align: center;
|
|
display: inline-block;
|
|
vertical-align:top;
|
|
margin: 0 0 0 0;
|
|
width: 30%;
|
|
}
|
|
</style>
|
|
|
|
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
|
|
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
|
|
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
|
|
<meta name="HandheldFriendly" content="true"/>
|
|
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
|
|
<link rel="stylesheet" type="text/css" href="../style3.css" />
|
|
<script src="../main3.js" type="text/javascript"></script>
|
|
</head>
|
|
|
|
<body id="bodybg" class="adv">
|
|
<div class="bg">
|
|
<div id="stt"></div>
|
|
<div id="hdr"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
|
|
<div id="advText">Advanced</div>
|
|
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
|
|
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
|
|
<div id="adTopOuter" class="centerfull noprint">
|
|
<div id="adTop">
|
|
<script type="text/javascript">document.write(getAdTop());</script>
|
|
</div>
|
|
</div>
|
|
<div id="adHide">
|
|
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
|
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
|
<a href="../about-ads.html">About Ads</a></div>
|
|
</div>
|
|
<div id="menuWide" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(0));</script>
|
|
</div>
|
|
<div id="linkto">
|
|
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
|
|
</div>
|
|
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
|
|
<div id="menuSlim" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(1));</script>
|
|
</div>
|
|
<div id="menuTiny" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(2));</script>
|
|
</div>
|
|
<div id="extra"></div>
|
|
</div>
|
|
<div id="content" role="main"><!-- #BeginEditable "Body" -->
|
|
<h1 align="center">Inverse of a Matrix <br />
|
|
using Elementary Row Operations</h1>
|
|
<p class="center"><i>Also called the Gauss-Jordan method.</i></p>
|
|
<p>This is a fun way to find the Inverse of a Matrix: </p>
|
|
<div class="center simple">
|
|
<div class="boxa"> Play around with the rows
|
|
(adding, multiplying or swapping)
|
|
until we make Matrix <b>A</b> into the Identity Matrix <b>I</b> </div>
|
|
<div class="boxa"> <img src="images/matrix-gauss-jordan1.svg" alt="matrix A | I becomes I | A inverse" /> </div>
|
|
<div class="boxa"> And by ALSO doing the changes to an Identity Matrix it magically turns into the Inverse! </div>
|
|
</div>
|
|
|
|
|
|
<p>The <b>"Elementary Row Operations"</b> are simple things like adding rows, multiplying and swapping ... but let's see with an example:</p>
|
|
<h2>Example: find the Inverse of "A":</h2>
|
|
<p align="center"><img src="images/matrix-gauss-jordan3.gif" width="173" height="73" alt="matrix A" /></p>
|
|
<p>We start with the matrix <span class="larger">A</span>, and write it down with an Identity Matrix <span class="larger">I</span> next to it:</p>
|
|
<p align="center"><img src="images/matrix-gauss-jordan6.gif" width="243" height="110" alt="matrix A augmented" /><br />
|
|
(This is called the "Augmented Matrix")
|
|
</p>
|
|
<div class="center80">
|
|
<h3>Identity Matrix</h3>
|
|
<p>The "Identity Matrix" is the matrix equivalent of the number "1":</p>
|
|
<p align="center"><img src="images/matrix-identity.gif" alt="Identity Matrix" width="186" height="95" /><br />
|
|
<span class="large">A 3x3 Identity Matrix</span><br />
|
|
</p>
|
|
<ul>
|
|
<li>It is "square" (has same number of rows as columns),</li>
|
|
<li>It has <b>1</b>s on the diagonal and <b>0</b>s everywhere else. </li>
|
|
<li>It's symbol is the capital letter <b>I</b>. </li>
|
|
</ul>
|
|
</div>
|
|
<p> </p>
|
|
<p>Now we do our best to turn "A" (the Matrix on the left) into an Identity Matrix. The goal is to make Matrix A have <b>1</b>s on the diagonal and <b>0</b>s elsewhere (an Identity Matrix) ... and the right hand side comes along for the ride, with every operation being done on it as well.</p>
|
|
<p>But we can only do these <b>"Elementary Row Operations"</b>:</p>
|
|
<ul>
|
|
<li><b>swap</b> rows</li>
|
|
<li><b>multiply</b> or divide each element in a a row by a constant</li>
|
|
<li>replace a row by <b>adding</b> or subtracting a multiple of another row to it</li>
|
|
</ul>
|
|
<p>And we must do it to the <b>whole row</b>, like this: </p>
|
|
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/matrix-gauss-jordan2.svg" alt="matrix row steps" /></p>
|
|
|
|
<div>
|
|
<p> </p>
|
|
<p>Start with <b>A</b> next to <b>I</b></p>
|
|
<p> </p>
|
|
<p>Add row 2 to row 1,</p>
|
|
<p> </p>
|
|
<p>then divide row 1 by 5,</p>
|
|
<p> </p>
|
|
<p>Then take 2 times the first row, and subtract it from the second row,</p>
|
|
<p> </p>
|
|
<p>Multiply second row by -1/2,</p>
|
|
<p> </p>
|
|
<p>Now swap the second and third row,</p>
|
|
<p> </p>
|
|
<p>Last, subtract the third row from the second row,</p>
|
|
<p>And we are done!</p>
|
|
</div>
|
|
<p> </p>
|
|
<p align="left" class="larger">And matrix <b>A</b> has been made into an Identity Matrix ...</p>
|
|
<p align="center" class="larger">... and at the same time an Identity Matrix got made into <b>A<sup>-1</sup></b></p>
|
|
<p align="center"><img src="images/matrix-gauss-jordan4.gif" width="189" height="72" alt="matrix A inverse" /></p>
|
|
<p align="center">DONE! Like magic, and just as fun as solving any puzzle.</p>
|
|
<p align="left"><b>And note: there is no "right way" to do this, just keep playing around until we succeed!</b></p>
|
|
<p align="left">(Compare this answer with the one we got on <a href="matrix-inverse-minors-cofactors-adjugate.html">Inverse of a Matrix using Minors, Cofactors and Adjugate</a>. Is it the same? Which method do you prefer?)</p>
|
|
<h2 align="left">Larger Matrices</h2>
|
|
<p align="left">We can do this with larger matrices, for example, try this 4x4 matrix:</p>
|
|
<p align="center"><img src="images/matrix-gauss-jordan8.gif" width="175" height="72" alt="matrix B" /></p>
|
|
<p>Start Like this:</p>
|
|
<p align="center"><img src="images/matrix-gauss-jordan9.gif" width="243" height="70" alt="matrix B augmented" /></p>
|
|
<p>See if you can do it yourself (I would begin by dividing the first row by 4, but you do it your way).</p>
|
|
<p>You can check your answer using the <a href="matrix-calculator.html">Matrix Calculator</a> (use the "inv(A)" button).<br />
|
|
</p>
|
|
<h2>Why it Works</h2>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/matrix-gauss-jordan5.svg" alt="8|1 becomes 1|(1/8)" /></p>
|
|
<p>I like to think of it this way: </p>
|
|
<ul>
|
|
<li>when we turn "8" into "1" by dividing by 8, </li>
|
|
<li>and do the same thing to "1", it turns into "1/8"</li>
|
|
</ul>
|
|
<p>And "1/8" is the (multiplicative)<b> inverse of 8</b></p>
|
|
<div style="clear:both"></div>
|
|
<p> </p>
|
|
<p>Or, more technically:</p>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/matrix-gauss-jordan7.svg" alt="matrix A | I becomes I | A inverse" /></p>
|
|
<p>The <b>total effect of all the row operations</b> is the same as <b>multiplying by <span class="larger">A<sup>-1</sup></span></b></p>
|
|
<p>So <b><span class="larger">A</span></b> becomes <span class="larger">I</span> (because <b><span class="larger">A<sup>-1</sup></span></b><b><span class="larger">A</span></b> = <b><span class="larger">I</span></b>)<br />
|
|
And <span class="larger">I</span> becomes <b><span class="larger">A<sup>-1</sup></span></b> (because <b><span class="larger">A<sup>-1</sup></span></b><b><span class="larger">I</span></b> = <b><span class="larger">A<sup>-1</sup></span></b>)</p>
|
|
<div style="clear:both"></div>
|
|
<p> </p>
|
|
<div class="questions">
|
|
<script type="text/javascript">getQ(2613, 2614, 8494, 8495, 8496, 2615, 2616, 8497, 8498, 8499);</script>
|
|
</div>
|
|
<div class="related">
|
|
<a href="matrix-multiplying.html">Multiplying Matrices</a>
|
|
<a href="matrix-determinant.html">Determinant of a Matrix</a>
|
|
<a href="matrix-calculator.html">Matrix Calculator</a>
|
|
<a href="matrix-inverse-row-operations-gauss-jordan.html">Inverse of a Matrix
|
|
using Elementary Row Operations</a>
|
|
<a href="index.html">Algebra Index</a> </div>
|
|
<!-- #EndEditable --></div>
|
|
<div id="adend" class="centerfull noprint">
|
|
<script type="text/javascript">document.write(getAdEnd());</script>
|
|
</div>
|
|
<div id="footer" class="centerfull noprint">
|
|
<script type="text/javascript">document.write(getFooter());</script>
|
|
</div>
|
|
<div id="copyrt">
|
|
Copyright © 2017 MathsIsFun.com
|
|
</div>
|
|
|
|
<script type="text/javascript">document.write(getBodyEnd());</script>
|
|
</body>
|
|
<!-- #EndTemplate -->
|
|
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:24 GMT -->
|
|
</html>
|