Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

262 lines
12 KiB
HTML

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/complex-plane.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:34 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Complex Plane</title>
<meta name="description" content="A plane for complex numbers!" />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Complex Plane</h1>
<table border="0" align="center">
<tr>
<td><img src="images/complex-plane.jpg" width="250" height="116" alt="complex plane (flying type)" /></td>
<td>No, <b>not</b> that complex plane ...</td>
</tr>
<tr>
<td><span class="center larger">... <b>this</b> complex plane:</span></td>
<td><p class="center"><img src="images/complex-plane.svg" alt="complex plane (math type)" /></p>
<p class="center">A <b>plane</b> for <b>complex</b> numbers!</p></td>
</tr>
</table>
<p class="center"><i>(Also called an "Argand Diagram")</i></p>
<h2>Real and Imaginary make Complex</h2>
<p>A <a href="../numbers/complex-numbers.html">Complex Number</a> is a combination of a Real Number and an Imaginary Number:</p>
<div class="def">
<p>A <a href="../numbers/real-numbers.html">Real Number</a> is the type of number we use every day.</p>
<p>Examples: 12.38, &frac12;, 0, &minus;2000</p>
</div>
<p>When we square a Real Number we get a positive (or zero) result:</p>
<p class="center"><b>2<sup>2</sup> = 2 &times; 2 = 4</b><br>
<b>1<sup>2</sup> = 1 &times; 1 = 1</b><br>
<b>0<sup>2</sup> = 0 &times; 0 = 0</b></p>
<p>What can we square to get &minus;1?</p>
<p class="center"><span class="large"><b>?</b></span><b><sup>2</sup> = &minus;1</b></p>
<p>Squaring &minus;1 does not work because <a href="../multiplying-negatives.html">multiplying negatives gives a positive</a>: (&minus;1) &times; (&minus;1) = +1, and no other Real Number works either.</p>
<p>So it seems that mathematics is incomplete ...</p>
<p class="center">... but we can fill the gap by <i><b>imagining</b></i> there is a number that, when multiplied by itself, gives &minus;1<br>
(call it <b>i</b> for imaginary):</p>
<p class="center large"><b>i<sup>2</sup> = &minus;1</b></p>
<div class="def">
<p>An <a href="../numbers/imaginary-numbers.html">Imaginary Number</a>, when <a href="../square-root.html">squared</a> gives a negative result</p>
<p class="center"><img src="../numbers/images/imaginary-squared.svg" alt="imaginary squared is negative" />.</p>
<p>Examples: 5<b>i</b>, -3.6<b>i</b>, <b>i</b>/2, 500<b>i</b></p>
</div>
<p>And together:</p>
<div class="def">
<p>A <a href="../numbers/complex-numbers.html">Complex Number</a> is a combination of a Real Number and an Imaginary Number</p>
<p>Examples: 3.6 + 4<b>i</b>, &minus;0.02 + 1.2<b>i</b>, 25 &minus; 0.3<b>i</b>, 0 + 2<b>i</b></p>
</div>
<h2>Putting a Complex Number on a Plane</h2>
<p>You may be familiar with the <a href="../number-line.html">number line</a>:</p>
<p class="center"><img src="../numbers/images/number-line.svg" max-width="100%" alt="number line -10 to +10" /></p>
<p>But where do we put a complex number like <span class="large">3+4<b>i</b></span> ?</p>
<p>Let's have the real number line go left-right as usual, and have the <b>imaginary number line go up-and-down</b>:</p>
<table border="0" align="center">
<tr>
<td><p>We can then plot a complex number like <b>3 + 4i</b> :</p>
<ul>
<li>3 units along (the real axis),</li>
<li>and 4 units up (the imaginary axis).</li>
</ul></td>
<td width="30" valign="top">&nbsp;</td>
<td><span class="center"><img src="images/complex-plane-3-4i.svg" alt="complex plane 3+4i" /></span></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td><p>And here is <span class="center"><b>4 - 2i</b></span> :</p>
<ul>
<li>4 units along (the real axis),</li>
<li>and 2 units down (the imaginary axis).</li>
</ul></td>
<td valign="top">&nbsp;</td>
<td><img src="images/complex-plane-4-2i.svg" alt="complex plane 4-2i" /></td>
</tr>
</table><p>&nbsp;</p>
<div class="def">
<p>And that is the <b>complex plane</b>:</p>
<ul>
<li><b>complex</b> because it is a combination of real and imaginary,</li>
<li><b>plane</b> because it is like a <a href="../geometry/plane.html">geometric plane</a> (2 dimensional).</li>
</ul>
</div>
<h2>Whole New World</h2>
<p>Now let's bring the <b>idea of a plane</b> (<a href="../data/cartesian-coordinates.html">Cartesian coordinates</a>, <a href="../polar-cartesian-coordinates.html">Polar coordinates</a>, <a href="vectors.html">Vectors</a> etc) to complex numbers.</p>
<p>It will open up a whole new world of numbers that are more complete and elegant, as you will see.</p>
<h2>Complex Number as a Vector</h2>
<p>We can think of a complex number as a <a href="vectors.html">vector</a>.</p>
<p class="center"><img src="images/vector.gif" width="142" height="81" alt="vector" /><br>
This is a vector. <br>
It has magnitude (length) and direction.</p>
<table border="0" align="center">
<tr>
<td><span class="center">And here is the complex number <b>3 + 4i</b></span>
<p class="center"><b>as a Vector</b>:</p></td>
<td width="30" valign="top">&nbsp;</td>
<td><img src="images/complex-plane-3-4i-vector.svg" alt="complex plane 3+4i vector" /></td>
</tr>
</table>
<h2>Adding</h2>
<p>You can add complex numbers as vectors, too:</p>
<table border="0" align="center">
<tr>
<td><p>To add the complex numbers <b>3 + 5i</b> and <b>4 &minus; 3i</b> :</p>
<ul>
<li>add the real numbers, and</li>
<li>add the imaginary numbers</li>
</ul>
<p>separately, like this:</p>
<div class="tbl">
<div class="row"><span class="left"><span class="center">(3 + 5<b>i</b>) + (4 &minus; 3<b>i</b>) =</span></span><span class="right">(3 + 4)</span><span class="right">+ (5 &minus; 3)<b>i</b></span></div>
<div class="row"><span class="left">=</span><span class="right">7</span><span class="right">+ 2<b>i</b></span></div>
</div>
</td>
<td valign="top">&nbsp;</td>
<td><img src="images/complex-plane-vector-add.svg" alt="complex plane vector addition" /></td>
</tr>
</table>
<h2>Polar Form</h2>
<table border="0" align="center">
<tr>
<td align="right">Let's use <b>3 + 4i </b> again:</td>
<td width="30" valign="top">&nbsp;</td>
<td><img src="images/complex-plane-3-4i-vector.svg" alt="complex plane 3+4i vector" /></td>
</tr>
<tr>
<td align="right">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td align="right"><p>Here it is <b>in polar form:</b></p></td>
<td valign="top">&nbsp;</td>
<td><img src="images/complex-plane-3-4i-polar.svg" alt="complex plane 3-4i is polar 5 at 0.927" /></td>
</tr>
</table>
<p>So the complex number <b>3 + 4i</b> can also be shown as distance (5) and angle (0.927 radians).</p>
<p>Let's see how to convert from one form to the other using <a href="../polar-cartesian-coordinates.html">Cartesian to Polar conversion</a>:</p>
<div class="example">
<h3>Example: the number <span class="center"><b>3 + 4i</b></span></h3>
<p>From <b>3 + 4i</b> :</p>
<ul>
<li><b>r = &radic;(x<sup>2</sup> + y<sup>2</sup>)</b> = &radic;(3<sup>2</sup> + 4<sup>2</sup>) = &radic;25 = <b>5</b></li>
<li><b><i>&theta;</i> = tan<sup>-1</sup> (y/x)</b> = tan<sup>-1</sup> (4/3) =<b> 0.927</b> (to 3 decimals)</li>
</ul>
<p>And we get distance (5) and angle (0.927 radians)</p>
<p>Back again:</p>
<ul>
<li><b>x = r &times; cos( <i>&theta;</i> )</b> = 5 &times; cos( 0.927 ) = 5 &times; 0.6002... = <b>3</b> (close enough)</li>
<li><b>y = r &times; sin(<i> &theta;</i> )</b> = 5 &times; sin( 0.927 ) = 5 &times; 0.7998... = <b>4</b> (close enough)</li>
</ul>
<p>And distance 5 and angle 0.927 becomes 3 and 4 again</p></div>
<p>In fact a common way to write a complex number in Polar form is</p>
<div class="tbl">
<div class="row"><span class="left"><span class="center">x + <b>i</b>y =</span></span><span class="right"><span class="center">r cos <i>&theta;</i> + <b>i</b> r sin <i>&theta;</i></span></span></div>
<div class="row"><span class="left">=</span><span class="right"><span class="center"> r(cos <i>&theta;</i> + <b>i</b> sin <i>&theta;</i>)</span></span></div>
</div>
<p>And &quot;cos <i>&theta;</i> + <b>i</b> sin <i>&theta;</i>&quot; is often shortened to &quot;cis <i>&theta;</i>&quot;, so:</p>
<p class="center larger"><b>x + iy</b> = <b>r cis <i>&theta;</i></b></p>
<p class="words"><b>cis</b> is just shorthand for <b>cos <i>&theta;</i> + i sin <i>&theta;</i></b></p>
So we can write:
<p class="center larger"><b>3 + 4i</b> = <b>5 cis 0.927</b></p>
<p>In some subjects, like electronics, "cis" is used a lot!</p>
<h2>Summary</h2>
<ul class="larger">
<li>The complex plane is a plane with:
<ul>
<li>real numbers running left-right and</li>
<li>imaginary numbers running up-down.</li>
</ul></li>
<li>To convert from Cartesian to Polar Form:
<ul>
<li><b>r = &radic;(x<sup>2</sup> + y<sup>2</sup>)</b></li>
<li><b><i>&theta;</i> = tan<sup>-1</sup> ( y / x )</b></li>
</ul></li>
<li>To convert from Polar to Cartesian Form:
<ul>
<li><b>x = r &times; cos( <i>&theta;</i> )</b></li>
<li><b>y = r &times; sin(<i> &theta;</i> )</b></li>
</ul></li>
<li>Polar form <b>r cos <i>&theta;</i> + i r sin <i>&theta;</i></b> is often shortened to<b> r cis <i>&theta;</i></b></li>
</ul>
<p>Next ... learn about <span class="center"><a href="complex-number-multiply.html">Complex Number Multiplication</a></span>.</p>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(7994, 7995, 7996, 7997, 7998, 7999, 8000, 8001, 8002, 8003);</script>&nbsp;
</div>
<div class="related">
<a href="../numbers/complex-numbers.html">Complex Numbers</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</div>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body>
<!-- Mirrored from www.mathsisfun.com/algebra/complex-plane.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:35 GMT -->
</html>