new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
325 lines
16 KiB
HTML
325 lines
16 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/circle-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:15 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Circle Equations</title>
|
||
|
||
|
||
|
||
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Circle Equations</h1>
|
||
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="../geometry/images/circle.svg" alt="circle" height="225" width="212"></p>
|
||
<p>A <a href="../geometry/circle.html">circle</a> is easy to make:</p>
|
||
<p class="center larger"><i>Draw a curve that is "radius" away<br>
|
||
from a central point.</i></p>
|
||
<p>And so:</p>
|
||
<p class="center large">All points are the same distance<br>
|
||
from the center.</p>
|
||
<div style="clear:both"></div>
|
||
<p> </p>
|
||
<p>In fact <b>the definition</b> of a circle is</p>
|
||
<div class="def">
|
||
<p><b>Circle:</b> The <a href="../sets/set-of-points.html">set of all points</a> on a plane that are a fixed distance from a center.</p>
|
||
</div>
|
||
|
||
|
||
<h2>Circle on a Graph</h2>
|
||
|
||
<p>Let us put a circle of radius 5 on a graph:</p>
|
||
<p class="center"><img src="images/graph-circle-5.svg" alt="graph circle" height="224" width="259"></p>
|
||
<p>Now let's work out <b>exactly</b> where all the points are.</p>
|
||
<p>We make a right-angled triangle:</p>
|
||
<p class="center"><img src="images/graph-circle-5a.svg" alt="graph circle" height="224" width="259"></p>
|
||
<p>And then use <a href="../pythagoras.html">Pythagoras</a>:</p>
|
||
<p class="center large" style="display: block;">x<sup>2</sup> + y<sup>2</sup> = 5<sup>2</sup></p>
|
||
<p class="larger">There are an <a href="../numbers/infinity.html">infinite</a> number of those points, here are some examples:</p>
|
||
<p class="center"><img src="images/graph-circle-5b.svg" alt="graph circle" height="224" width="259"></p>
|
||
<div class="simple">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<th align="center">x</th>
|
||
<th align="center">y</th>
|
||
<th align="right">x<sup>2</sup> + y<sup>2</sup></th>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center; width:30px;">5</td>
|
||
<td style="text-align:center; width:30px;">0</td>
|
||
<td style="text-align:right;">5<sup>2</sup> + 0<sup>2</sup> = 25 + 0 = 25</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">3</td>
|
||
<td style="text-align:center;">4</td>
|
||
<td style="text-align:right;">3<sup>2</sup> + 4<sup>2</sup> = 9 + 16 = 25</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">0</td>
|
||
<td style="text-align:center;">5</td>
|
||
<td style="text-align:right;">0<sup>2</sup> + 5<sup>2</sup> = 0 + 25 = 25</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">−4</td>
|
||
<td style="text-align:center;">−3</td>
|
||
<td style="text-align:right;">(−4)<sup>2</sup> + (−3)<sup>2</sup> = 16 + 9 = 25</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">0</td>
|
||
<td style="text-align:center;">−5</td>
|
||
<td style="text-align:right;">0<sup>2</sup> + (−5)<sup>2</sup> = 0 + 25 = 25</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p class="larger">In all cases a point on the circle follows the rule x<sup>2</sup> + y<sup>2</sup> = radius<sup>2</sup></p>
|
||
<p>We can use that idea to find a missing value</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: <b>x</b> value of 2, and a <b>radius</b> of 5</h3>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right">x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Values we know:</span><span class="right">2<sup>2</sup> + y<sup>2</sup> = 5<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Rearrange:</span><span class="right"> y<sup>2</sup> = 5<sup>2</sup> − 2<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Square root both sides:</span><span class="right"> y = ±√(5<sup>2</sup> − 2<sup>2</sup>)</span></div>
|
||
<div class="row"><span class="left">Solve:</span><span class="right">y = ±√21</span></div>
|
||
<div class="row"><span class="left"> </span><span class="right">y ≈ <b>±4.58...</b></span></div>
|
||
</div>
|
||
<p><i>(The <b>±</b> means there are two possible values: one with <b>+</b> the other with <b>−</b>)</i></p>
|
||
<p>And here are the two points:</p>
|
||
<p class="center"><img src="images/graph-circle-5c.svg" alt="graph circle" height="224" width="259"></p>
|
||
</div>
|
||
|
||
|
||
<h2>More General Case</h2>
|
||
|
||
<p>Now let us put the center at <b>(a,b)</b></p>
|
||
<p class="center"><img src="images/graph-circle-a.svg" alt="graph circle" height="224" width="259"></p>
|
||
<p>So the circle is <b>all the points (x,y)</b> that are <b>"r"</b> away from the center <b>(a,b)</b>.</p>
|
||
<div style="clear:both"></div>
|
||
<p>Now lets work out where the points are (using a right-angled triangle and <a href="../pythagoras.html">Pythagoras</a>):</p>
|
||
<p class="center"><img src="images/graph-circle-b.svg" alt="graph circle" height="224" width="259"></p>
|
||
<p>It is the same idea as before, but we need to subtract <b>a</b> and <b>b</b>:</p>
|
||
<div class="def">
|
||
<p class="center large" style="display: block;">(x−a)<sup>2</sup> + (y−b)<sup>2</sup> = r<sup>2</sup></p>
|
||
</div>
|
||
<p class="center larger">And that is the <b>"Standard Form"</b> for the equation of a circle!</p>
|
||
<p> </p>
|
||
<p>It shows all the important information at a glance: the center <b>(a,b)</b> and the radius <b>r</b>.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: A circle with center at (3,4) and a radius of 6:</h3>
|
||
<p>Start with:</p>
|
||
<p><span class="center large" style="display: block;">(x−a)<sup>2</sup> + (y−b)<sup>2</sup> = r<sup>2</sup></span></p>
|
||
<p>Put in (a,b) and r:</p>
|
||
<p><span class="center large" style="display: block;">(x−3)<sup>2</sup> + (y−4)<sup>2</sup> = 6<sup>2</sup></span></p>
|
||
<p>We can then use our algebra skills to simplify and rearrange that equation, depending on what we need it for.</p>
|
||
</div>
|
||
|
||
|
||
<h2>Try it Yourself</h2>
|
||
|
||
<div class="script" style="height: 360px;">
|
||
images/circle-equn.js
|
||
</div>
|
||
|
||
|
||
<h2>"General Form"</h2>
|
||
|
||
<p>But you may see a circle equation and <b>not know it</b>!</p>
|
||
<p class="center larger">Because it may not be in the neat "Standard Form" above.</p>
|
||
<p>As an example, let us put some values to a, b and r and then expand it</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right">(x−a)<sup>2</sup> + (y−b)<sup>2</sup> = r<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Example: a=1, b=2, r=3:</span><span class="right">(x−1)<sup>2</sup> + (y−2)<sup>2</sup> = 3<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Expand: </span><span class="right">x<sup>2</sup> − 2x + 1 + y<sup>2</sup> − 4y + 4 = 9</span></div>
|
||
<div class="row"><span class="left">Gather <a href="like-terms.html">like terms</a>:</span><span class="right">x<sup>2</sup> + y<sup>2</sup> − 2x − 4y + 1 + 4 − 9 = 0</span></div>
|
||
</div>
|
||
<p>And we end up with this:</p>
|
||
<p class="center"><span class="large">x<sup>2</sup> + y<sup>2</sup> − 2x − 4y − 4 = 0</span></p>
|
||
<p class="center">It is a circle equation, but "in disguise"!</p>
|
||
<p>So when you see something like that think <i>"hmm ... that <b>might</b> be a circle!"</i></p>
|
||
<p>In fact we can write it in <b>"General Form"</b> by putting constants instead of the numbers:</p>
|
||
<div class="def">
|
||
<p class="center"><span class="large">x<sup>2</sup> + y<sup>2</sup> + Ax + By + C = 0</span></p>
|
||
</div>
|
||
<p><i>Note: General Form always has <span class="large">x<sup>2</sup> + y<sup>2</sup></span> for the first two terms</i>.</p>
|
||
|
||
|
||
<h2>Going From General Form to Standard Form</h2>
|
||
|
||
<p>Now imagine we have an equation in <b>General Form</b>:</p>
|
||
<p class="center large">x<sup>2</sup> + y<sup>2</sup> + Ax + By + C = 0</p>
|
||
<p>How can we get it into <b>Standard Form</b> like this?</p>
|
||
<p class="center large">(x−a)<sup>2</sup> + (y−b)<sup>2</sup> = r<sup>2</sup></p>
|
||
<p>The answer is to <a href="completing-square.html">Complete the Square</a> (read about that) twice ... once for <b>x</b> and once for <b>y</b>:</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: x<sup>2</sup> + y<sup>2</sup> − 2x − 4y − 4 = 0</h3>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right">x<sup>2</sup> + y<sup>2</sup> − 2x − 4y − 4 = 0</span></div>
|
||
<div class="row"><span class="left">Put <b>x</b>s and <b>y</b>s together:</span><span class="right"><span class="larger">(x<sup>2</sup> − 2x) + (y<sup>2</sup> − 4y) − 4 = 0</span></span></div>
|
||
<div class="row"><span class="left">Constant on right:</span><span class="right"><span class="larger">(x<sup>2</sup> − 2x) + (y<sup>2</sup> − 4y) = 4</span></span></div>
|
||
</div>
|
||
<p>Now complete the square for <b>x</b> (take half of the −2, square it, and add to both sides):</p>
|
||
<p class="larger center">(x<sup>2</sup> − 2x + <span class="hilite">(−1)<sup>2</sup></span>) + (y<sup>2</sup> − 4y) = 4 + <span class="hilite">(−1)<sup>2</sup></span></p>
|
||
<p>And complete the square for <b>y</b> (take half of the −4, square it, and add to both sides):</p>
|
||
<p class="larger center">(x<sup>2</sup> − 2x + (−1)<sup>2</sup>) + (y<sup>2</sup> − 4y + <span class="hilite">(−2)<sup>2</sup></span>) = 4 + (−1)<sup>2</sup> + <span class="hilite">(−2)<sup>2</sup></span></p>
|
||
<p>Tidy up:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Simplify:</span><span class="right">(x<sup>2</sup> − 2x + 1) + (y<sup>2</sup> − 4y + 4) = 9</span></div>
|
||
<div class="row"><span class="left">Finally:</span><span class="right">(x − 1)<sup>2</sup> + (y − 2)<sup>2</sup> = 3<sup>2</sup></span></div>
|
||
</div>
|
||
<p>And we have it in Standard Form!</p>
|
||
<p>(Note: this used the <span class="left"> a=1, b=2, r=3 </span>example from before, so we got it right!)</p>
|
||
</div>
|
||
|
||
|
||
<h2>Unit Circle</h2>
|
||
|
||
<p>If we place the circle center at (0,0) and set the radius to 1 we get:</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="../geometry/images/circle-unit-pythagoras.gif" alt="Unit Circle" height="219" width="221"></td>
|
||
<td>
|
||
<p class="center larger">(x−a)<sup>2</sup> + (y−b)<sup>2</sup> = r<sup>2</sup></p>
|
||
<p class="center larger">(x−0)<sup>2</sup> + (y−0)<sup>2</sup> = 1<sup>2</sup></p>
|
||
<p class="center"><span class="large">x<sup>2</sup> + y<sup>2</sup> = 1</span></p>
|
||
Which is the equation of the <a href="../geometry/unit-circle.html">Unit Circle</a></td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
|
||
<h2>How to Plot a Circle by Hand</h2>
|
||
|
||
<p>1. Plot the center <b>(a,b)</b></p>
|
||
<p>2. Plot 4 points "radius" away from the center in the up, down, left and right direction</p>
|
||
<p>3. Sketch it in!</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Plot (x−4)<sup>2</sup> + (y−2)<sup>2</sup> = 25</h3>
|
||
<p>The formula for a circle is <span class="large">(x−a)<sup>2</sup> + (y−b)<sup>2</sup> = r<sup>2</sup></span></p>
|
||
<p>So the center is at <span class="large">(4,2)</span></p>
|
||
<p>And <b>r<sup>2</sup></b> is <b>25</b>, so the radius is <span class="large">√25 = 5</span></p>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-circle-c.gif" alt="graph circle" height="231" width="260"></p>
|
||
<p>So we can plot:</p>
|
||
<ul>
|
||
<li>The Center: (4,2)</li>
|
||
<li>Up: (4,2+5) = (4,7)</li>
|
||
<li>Down: (4,2−5) = (4,−3)</li>
|
||
<li>Left: (4−5,2) = (−1,2)</li>
|
||
<li>Right: (4+5,2) = (9,2)</li>
|
||
</ul><div style="clear:both"></div>
|
||
<p>Now, just sketch in the circle the best we can!</p>
|
||
</div>
|
||
|
||
|
||
<h2>How to Plot a Circle on the Computer</h2>
|
||
|
||
<p>We need to rearrange the formula so we get "y=".</p>
|
||
<p>We should end up with two equations (top and bottom of circle) that can then be plotted.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Plot (x−4)<sup>2</sup> + (y−2)<sup>2</sup> = 25</h3>
|
||
<p>So the center is at <span class="large">(4,2)</span>, and the radius is <span class="large">√25 = 5</span></p>
|
||
<p>Rearrange to get "y=":</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"> (x−4)<sup>2</sup> + (y−2)<sup>2</sup> = 25</span></div>
|
||
<div class="row"><span class="left">Move (x−4)<sup>2</sup> to the right:</span><span class="right"> (y−2)<sup>2</sup> = 25 − (x−4)<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Take the square root: </span><span class="right">(y−2) = ± √[25 − (x−4)<sup>2</sup>]</span></div>
|
||
<div class="row"><span class="left"> </span><span class="right"><i>(notice the ± "plus/minus" ...<br>
|
||
there can be two square roots!)</i></span></div>
|
||
<div class="row"><span class="left">Move the "−2" to the right:</span><span class="right">y = 2 ± √[25 − (x−4)<sup>2</sup>]</span></div>
|
||
</div>
|
||
<p> </p>
|
||
<p>So when we plot these two equations we should have a circle:</p>
|
||
<ul>
|
||
<li><span class="larger">y = 2 + √[25 − (x−4)<sup>2</sup>]</span></li>
|
||
<li><span class="larger">y = 2 − √[25 − (x−4)<sup>2</sup>]</span></li>
|
||
</ul>
|
||
<p>Try plotting those functions on the <a href="../data/function-grapher.html">Function Grapher</a>.</p>
|
||
<p>It is also possible to use the <a href="../data/grapher-equation.html">Equation Grapher</a> to do it all in one go.</p>
|
||
</div>
|
||
|
||
<p> </p>
|
||
<div class="questions">8526, 8527, 8539, 8540, 8515, 8516, 569, 8544, 8559, 8560, 570, 1209</div>
|
||
|
||
<div class="related">
|
||
<a href="../geometry/circle.html">Circle</a>
|
||
<a href="../geometry/unit-circle.html">Unit Circle</a>
|
||
<a href="../geometry/index.html">Geometry Index</a>
|
||
<a href="index.html">Algebra Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/circle-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:17 GMT -->
|
||
</html> |