Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

398 lines
21 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/sets/function-inverse.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:42 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Inverse Functions</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Inverse Functions</h1>
<p align="center"><i>An inverse function goes the other way!</i></p>
<p>Let us start with an example:</p>
<p class="center">Here we have the function <b>f(x) = 2x+3</b>, written as a flow diagram:</p>
<p class="center"><img src="images/flow-2xp3.svg" alt="2x+3" /></p>
<p class="center">The <b>Inverse Function</b> goes the other way:</p>
<p class="center"><img src="images/flow-2xp3-inv.svg" alt="Inverse" /></p>
<p class="center">So the inverse of: &nbsp; 2x+3 &nbsp; is: &nbsp; (y-3)/2</p>
<p>&nbsp;</p>
<p>The inverse is usually shown by putting a little &quot;-1&quot; after the function name, like this: </p>
<p align="center"> <span class="largest">f<sup>-1</sup>(y)</span></p>
<p align="center"><i>We say &quot;<b>f inverse</b> of y&quot;</i></p>
<p>So, the inverse of <span class="large">f(x) = 2x+3</span> is written:</p>
<p align="center"> <span class="large">f<sup>-1</sup>(y) = (y-3)/2</span></p>
<p>(I also used <b>y</b> instead of <b>x</b> to show that we are using a different value.) </p>
<h2>Back to Where We Started</h2>
<p>The cool thing about the inverse is that it should give us back the original value:</p>
<p align="center"><img src="images/function-apple-banana.svg" alt="banana f() to apple f()-inverse back to banana" />
<br /> When the function <span class="large">f</span> turns the apple into a banana,
<br /> Then the <b>inverse</b> function <span class="large">f<sup>-1</sup></span> turns the banana back to the apple</p>
<br />
<div class="example">
<h3>Example: </h3>
<p>Using the formulas from above, we can start with <span class="large">x=4</span>:</p>
<p align="center"> <span class="large">f(4) = 2&times;4+3 = 11</span></p>
<p>We can then use the inverse on the 11:</p>
<p align="center"><span class="large">f<sup>-1</sup>(11) = (11-3)/2 = 4</span></p>
<p>And we magically get <b>4</b> back again!</p>
<p>We can write that in one line:</p>
<p align="center"><span class="large">f<sup>-1</sup>( f(4) ) = 4</span></p>
<p class="center"><i>&quot;f inverse of &nbsp; f of 4 &nbsp; equals 4&quot;</i></p>
</div>
<p>So applying a function <span class="large">f</span> and then its inverse <span class="large">f<sup>-1</sup></span> gives us the original value back again:</p>
<p align="center"><span class="large">f<sup>-1</sup>( f(x) ) = x</span></p>
<p>We could also have put the functions in the other order and it still works:</p>
<p align="center"><span class="large">f( f<sup>-1</sup>(x) ) = x</span></p>
<div class="example">
<h3>Example: </h3>
<p>Start with:</p>
<p align="center"><span class="large">f<sup>-1</sup>(11) = (11-3)/2 = 4</span></p>
<p>And then:</p>
<p align="center"> <span class="large">f(4) = 2&times;4+3 = 11</span></p>
<p>So we can say:</p>
<p align="center"><span class="large">f( f<sup>-1</sup>(11) ) = 11</span></p>
<p class="center"><i>&quot;f of &nbsp; f inverse of 11 &nbsp; equals 11&quot;</i></p>
</div>
<h2>Solve Using Algebra</h2>
<p>We can work out the inverse using Algebra. <b>Put &quot;y&quot; for &quot;f(x)&quot; and solve for x:</b></p>
<table border="0" align="center">
<tr>
<td align="right">The function:</td>
<td>&nbsp;</td>
<td align="right"><b>f(x)</b></td>
<td align="center"> = </td>
<td align="left"><b>2x+3</b></td>
</tr>
<tr>
<td align="right">Put &quot;y&quot; for &quot;f(x)&quot;:</td>
<td>&nbsp;</td>
<td align="right"><b>y</b></td>
<td align="center">=</td>
<td align="left"><b>2x+3</b></td>
</tr>
<tr>
<td align="right">Subtract 3 from both sides:</td>
<td>&nbsp;</td>
<td align="right"><b>y-3</b></td>
<td align="center">=</td>
<td align="left"><b>2x</b></td>
</tr>
<tr>
<td align="right">Divide both sides by 2:</td>
<td>&nbsp;</td>
<td align="right"><b>(y-3)/2</b></td>
<td align="center">=</td>
<td align="left"><b>x</b></td>
</tr>
<tr>
<td align="right">Swap sides:</td>
<td>&nbsp;</td>
<td align="right"><b>x</b></td>
<td align="center">=</td>
<td align="left"><b>(y-3)/2</b></td>
</tr>
<tr>
<td align="right">&nbsp;</td>
<td>&nbsp;</td>
<td align="right">&nbsp;</td>
<td align="center">&nbsp;</td>
<td align="left">&nbsp;</td>
</tr>
<tr>
<td align="right">Solution (put &quot;f<sup>-1</sup>(y)&quot; for &quot;x&quot;) : </td>
<td>&nbsp;</td>
<td align="right"><b>f<sup>-1</sup>(y)</b></td>
<td align="center">=</td>
<td align="left"><b>(y-3)/2</b></td>
</tr>
</table>
<p>This method works well for more difficult inverses.</p>
<h2>Fahrenheit to Celsius</h2>
<p>A useful example is converting between <a href="../temperature-conversion.html">Fahrenheit and Celsius</a>:</p>
<div class="tbl">
<div class="row"><span class="left">To convert Fahrenheit to Celsius:</span><span class="right"><b>f(F) = (F - 32) &times; <span class="intbl"><em>5</em><strong>9</strong></span></b></span></div>
<div class="row"><span class="left">The <b>Inverse Function</b> (Celsius back to Fahrenheit):</span><span class="right"><b>f<sup>-1</sup>(C) = (C &times; <span class="intbl"><em>9</em><strong>5</strong></span>) + 32</b></span></div>
</div>
<p>For you: see if you can do the steps to create that inverse!</p>
<h2>Inverses of Common Functions</h2>
<p>It has been easy so far, because we know the inverse of Multiply is Divide, and the inverse of Add is Subtract, but what about other functions?</p>
<p>Here is a list to help you:</p>
<table border="0" align="center" cellspacing="10">
<tr bgcolor="#FFFFCC">
<td colspan="3" align="center" class="large">Inverses</td>
<td width="220" align="center" class="large">Careful!</td>
</tr>
<tr>
<td width="130" align="center" class="large"><img src="../numbers/images/40x40-add.gif" alt="add" width="40" height="40" border="0" /></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large"><img src="../numbers/images/40x40-sub.gif" alt="Subtract" width="40" height="40" border="0" /></td>
<td width="220" align="center">&nbsp;</td>
</tr>
<tr>
<td width="130" align="center" class="large"><img src="../numbers/images/40x40-mult.gif" alt="Multiply" width="40" height="40" border="0" /></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large"><img src="../numbers/images/40x40-div.gif" alt="Divide" width="40" height="40" border="0" /></td>
<td width="220" align="center">Don't divide by zero</td>
</tr>
<tr>
<td width="130" align="center" class="large"><span class="intbl"><em>1</em><strong>x</strong></span></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large"><span class="intbl"><em>1</em><strong>y</strong></span></td>
<td width="220" align="center">x and y not zero</td>
</tr>
<tr>
<td width="130" align="center" class="large">x<sup>2</sup></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large"><img src="images/sqrt-y.gif" alt="sqrt-y" width="27" height="21" /></td>
<td width="220" align="center">x and y &ge; 0</td>
</tr>
<tr>
<td width="130" align="center" class="large">x<sup>n</sup></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large"><img src="images/n-root-y.gif" alt="nth-root-y" width="27" height="21" align="absmiddle" /> <b>or</b> <img src="images/y-1-n.gif" alt="y^(1/n)" width="20" height="26" align="absmiddle" /></td>
<td width="220" align="center">n not zero
<br /> <i>(different rules
when n is odd, even, negative or positive)</i> </td>
</tr>
<tr>
<td width="130" align="center" class="large">e<sup>x</sup></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large">ln(y)</td>
<td width="220" align="center">y &gt; 0</td>
</tr>
<tr>
<td width="130" align="center" class="large">a<sup>x</sup></td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large">log<sub>a</sub>(y)</td>
<td width="220" align="center">y and a &gt; 0</td>
</tr>
<tr>
<td width="130" align="center" class="large">sin(x)</td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large">sin<sup>-1</sup>(y)</td>
<td width="220" align="center">-<span class="times">&pi;</span>/2 to +<span class="times">&pi;</span>/2</td>
</tr>
<tr>
<td width="130" align="center" class="large">cos(x)</td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large">cos<sup>-1</sup>(y)</td>
<td width="220" align="center">0 to <span class="times">&pi;</span></td>
</tr>
<tr>
<td width="130" align="center" class="large">tan(x)</td>
<td width="60" align="center">&lt;=&gt;</td>
<td width="130" align="center" class="large">tan<sup>-1</sup>(y)</td>
<td width="220" align="center">-<span class="times">&pi;</span>/2 to +<span class="times">&pi;</span>/2</td>
</tr>
</table>
<p>(Note: you can read more about <a href="../algebra/trig-inverse-sin-cos-tan.html">Inverse Sine, Cosine and Tangent</a>.)</p>
<h2>Careful!</h2>
<p>Did you see the &quot;Careful!&quot; column above? That is because some inverses work <b>only with certain values</b>.</p>
<div class="example">
<h3>Example: Square and Square Root</h3>
<p>When we square a <b>negative</b> number, and then do the inverse, this happens:</p>
<div class="tbl">
<div class="row"><span class="left">Square:</span><span class="right">(<span class="hilite">&minus;2</span>)<sup>2</sup> = 4</span></div>
<div class="row"><span class="left">Inverse (Square Root): </span><span class="right">&radic;(4) = <span class="hilite">2</span></span></div>
</div>
<p>But we didn't get the original value back! We got <b>2</b> instead of <b>&minus;2</b>. Our fault for not being careful!</p>
<p>So the square function (as it stands) <b>does not have an inverse</b></p>
</div>
<h3>But we can fix that!</h3>
<p><b>Restrict the <a href="domain-range-codomain.html">Domain</a></b> (the values that can go into a function).</p>
<div class="example">
<h3>Example: (continued)</h3>
<p>Just make sure we don't use negative numbers.</p>
<p>In other words, restrict it to <b>x &ge; 0</b> and then we can have an inverse.</p>
<p>So we have this situation:</p>
<ul>
<li><span class="large">x<sup>2</sup></span> does<b> not</b> have an inverse</li>
<li>but <span class="large">{x<sup>2</sup> | x &ge; 0 }</span> (which says &quot;x squared such that x is greater than or equal to zero&quot; using <a href="set-builder-notation.html">set-builder notation</a>) <b>does </b>have an inverse.</li>
</ul>
</div>
<h2>No Inverse?</h2>
<p>Let us see graphically what is going on here:</p>
<p align="center" class="larger">To be able to have an inverse we need <b>unique values</b>. </p>
<p>Just think ... if there are two or more <b>x-values</b> for one <b>y-value</b>, how do we know which one to choose when going back?</p>
<table border="0" align="center">
<tr align="center">
<td align="center"><span class="large">General Function</span></td>
</tr>
<tr>
<td width="230" align="center"><img src="images/function-general-graph.svg" alt="General Function" /></td>
</tr>
<tr align="center">
<td align="center" class="larger"><img src="../images/style/no.svg" alt="not" height="46" style="vertical-align:middle;" />No Inverse</td>
</tr>
</table>
<p>Imagine we came <b>from</b> x<sub>1</sub> to a particular y value, where do we go back to? x<sub>1</sub> or x<sub>2</sub>? </p>
<p>In that case we can't have an inverse.</p>
<p>But if we can have exactly one x for every y we can have an inverse. </p>
<p>It is called a &quot;one-to-one correspondence&quot; or <a href="injective-surjective-bijective.html">Bijective</a>, like this</p>
<table border="0" align="center">
<tr align="center">
<td align="center" class="large">Bijective Function</td>
</tr>
<tr>
<td width="230" align="center"><img src="images/function-bijective-graph.svg" alt="Bijective Function" /></td>
</tr>
<tr align="center">
<td align="center" class="larger"><img src="../images/style/yes.svg" alt="not" height="46" style="vertical-align:middle;" />Has an Inverse</td>
</tr>
</table>
<div class="def">
<p class="larger">A function has to be &quot;Bijective&quot; to have an inverse.</p>
</div>
<p>So a bijective function follows stricter rules than a general function, which allows us to have an inverse.</p>
<h2>Domain and Range</h2>
<p>So what is all this talk about &quot;<b>Restricting the Domain</b>&quot;? </p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/range-domain-graph.svg" alt="domain and range graph" /></p>
<p>In its simplest form the <b>domain</b> is all the values that go into a function (and the <b>range</b> is all the values that come out).</p>
<div style="clear:both"></div> <p>As it stands the function above does <b>not</b> have an inverse, because some y-values will have more than one x-value.</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/range-domain-injective.svg" alt="doman and range" /></p>
<p>But we could restrict the domain so there is a <b>unique x for every y</b> ... </p><div style="clear:both"></div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/range-domain-inverse.svg" alt="doman and range" /></p>
<div align="right" class="larger">... and now we <b>can</b> have an inverse: </div>
<p>Note also:</p>
<ul>
<li>The function <b>f(x)</b> goes from the domain to the range,</li>
<li>The inverse function <b>f<sup>-1</sup>(y)</b> goes from the range back to the domain.</li>
</ul>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Let's plot them both in terms of <b>x</b> ... so it is now <b>f<sup>-1</sup>(x)</b>, not <b>f<sup>-1</sup>(y)</b>:</p>
<p class="center"><img src="images/range-domain-flip.gif" alt="doman and range" width="223" height="193" /></p>
<p align="center" class="larger"><b>f(x)</b> and <b>f<sup>-1</sup>(x)</b> are like mirror images
<br /> (flipped about the diagonal). </p>
<p>In other words:</p>
<div class="def">
<p>The graph of <b>f(x)</b> and<b> f<sup>-1</sup>(x)</b> are symmetric across the line <b>y=x</b></p>
</div>
<p>&nbsp;</p>
<div class="example">
<h3>Example: Square and Square Root (continued)</h3>
<p><b>First</b>, we restrict the Domain to <b>x &ge; 0</b>:</p>
<ul>
<li><b>{x<sup>2</sup> | x &ge; 0 }</b> <i>&quot;x squared such that x is greater than or equal to zero&quot;</i></li>
<li><b>{&radic;x | x &ge; 0 }</b> <i>&quot;square root of x such that x is greater than or equal to zero&quot;</i></li>
</ul>
<p>&nbsp;</p>
<p align="center"><img src="images/x2-vs-rootx.gif" alt="x^2 vs square root x" width="188" height="188" />
<br /> And you can see they are &quot;mirror images&quot;
<br /> of each other about the diagonal y=x.</p>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/x2-vs-mrootx.gif" alt="x^2 vs -square root x" width="147" height="148" /></p>
<p>Note: when we restrict the domain to <b>x &le; 0</b> (less than or equal to 0) the inverse is then <b>f<sup>-1</sup>(x) = &minus;&radic;x</b>:</p>
<ul>
<li><b>{x<sup>2</sup> | x &le; 0 }</b></li>
<li><b>{&minus;&radic;x | x &ge; 0 }</b></li>
</ul>
<p>Which are inverses, too. </p>
</div>
<h2>Not Always Solvable!</h2>
<p>It is sometimes not possible to find an Inverse of a Function.</p>
<div class="example">
<p>Example: <span class="large">f(x) = x/2 + sin(x)</span></p>
<p>We cannot work out the inverse of this, because we cannot solve for &quot;x&quot;:</p>
<p align="center"><span class="large">y = x/2 + sin(x)</span></p>
<p align="center"><span class="large">y ... ? = x</span></p>
</div>
<h2>Notes on Notation</h2>
<p>Even though we write <span class="large">f<sup>-1</sup>(x)</span>, the &quot;-1&quot; is <b>not </b>an <a href="../exponent.html">exponent (or power)</a>:</p>
<div class="beach">
<table border="0" align="center">
<tr>
<td width="150" align="center"><span class="large">f<sup>-1</sup>(x)</span></td>
<td width="150" align="center"><i><b>...is different to...</b></i></td>
<td width="150" align="center"><span class="large">f(x)</span><span class="large"><sup>-1</sup></span></td>
</tr>
<tr>
<td width="150" align="center">Inverse of the function <b>f</b></td>
<td width="150" align="center">&nbsp;</td>
<td width="150" align="center"><b>f(x)<sup>-1</sup> = 1/f(x)</b>
<br /> (the <a href="../algebra/reciprocal.html">Reciprocal</a>) </td>
</tr>
</table>
</div>
<h2>Summary</h2>
<ul>
<div class="bigul">
<li>The inverse of f(x) is f<sup>-1</sup>(y)</li>
<li>We can find an inverse by reversing the &quot;flow diagram&quot;</li>
<li>Or we can find an inverse by using Algebra:
<ul>
<li>Put &quot;y&quot; for &quot;f(x)&quot;, and </li>
<li>Solve for x</li>
</ul>
</li>
<li>We may need to <b>restrict the domain</b> for the function to have an inverse</li>
</div>
</ul>
<div class="questions">
<script type="text/javascript">
getQ(565, 566, 1197, 1198, 2357, 8417, 1199, 1200, 2358, 8418);
</script>&nbsp; </div>
<div class="related"><a href="function.html">What is A Function?</a> <a href="injective-surjective-bijective.html">Injective, Surjective and Bijective</a> <a href="sets-introduction.html">Sets</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/sets/function-inverse.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:45 GMT -->
</html>