new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
242 lines
9.1 KiB
HTML
242 lines
9.1 KiB
HTML
<!doctype html>
|
||
<html lang="en">
|
||
<!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
<!-- Mirrored from www.mathsisfun.com/prime-factorization.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:36 GMT -->
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Prime Factorization</title>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
|
||
<link rel="preload" href="style4.css" as="style">
|
||
<link rel="preload" href="main4.js" as="script">
|
||
<link rel="stylesheet" href="style4.css">
|
||
<script src="main4.js" defer></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Prime Factorization</h1>
|
||
|
||
|
||
<h2>Prime Numbers</h2>
|
||
|
||
<p>A Prime Number is:</p>
|
||
<div class="def">
|
||
<p class="center">a whole number greater than 1 that can <b>not</b> be made by multiplying other whole numbers</p>
|
||
</div>
|
||
<p>The first few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19 and 23,
|
||
and we have a <a href="prime_numbers.html">prime number chart</a> if you need more.</p>
|
||
<p>If we <b>can</b> make it by multiplying other whole numbers it is a <b>Composite Number</b>.</p>
|
||
<p>Like this:</p>
|
||
<p class="center"><img src="numbers/images/prime-composite.svg" alt="prime composite" height="155" width="532" ></p>
|
||
<div class="center larger">2 is Prime, 3 is Prime, 4 is Composite (=2×2), 5 is Prime, and so on... </div>
|
||
|
||
|
||
<h2>Factors</h2>
|
||
|
||
<p>"Factors" are the numbers you multiply together to get
|
||
another number:</p>
|
||
<p class="center"><img src="numbers/images/factor-2x3.svg" alt="factors 2x3=6" height="70" width="181" ></p>
|
||
|
||
|
||
<h2>Prime Factorization</h2>
|
||
|
||
<div class="center80">
|
||
<p class="larger">"Prime Factorization" is finding <b>which prime numbers</b> multiply together to make the original number.</p>
|
||
</div>
|
||
<p>Here are some examples:</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What are the prime factors of 12 ?</h3>
|
||
<p>It is best to start working from the smallest prime number, which
|
||
is 2, so let's check:</p>
|
||
<p class="center larger">12 ÷ 2 = 6</p>
|
||
<p>Yes, it divided exactly by 2. We have taken the first step!</p>
|
||
<p>But 6 is not a prime number, so we need to go further. Let's try 2 again:</p>
|
||
<p class="center larger">6 ÷ 2 = 3</p>
|
||
<p>Yes, that worked also. And 3 <b>is</b> a prime number, so we have the answer:</p>
|
||
<p class="center larger"><b>12 = 2 × 2 × 3</b></p>
|
||
<p> </p>
|
||
<p class="larger">As you can see, <b>every factor</b> is a <b>prime number</b>, so the answer must be right.</p>
|
||
<p> </p>
|
||
<p>Note: <b>12 = 2 × 2 × 3</b> can also be written using <a href="exponent.html">exponents</a> as <b>12 = 2<sup>2</sup> × 3</b></p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What is the prime factorization of 147 ?</h3>
|
||
<p>Can we divide 147 exactly by 2?</p>
|
||
<p class="center larger">147 ÷ 2 = 73½</p>
|
||
<p>No it can't. The answer should be a whole number, and <span class="larger">73½</span> is not.</p>
|
||
<p>Let's try the next prime
|
||
number, 3:</p>
|
||
<p class="center larger">147 ÷ 3 = 49</p>
|
||
<p>That worked, now we try factoring 49.</p>
|
||
<p>The next prime, 5, does not work. But 7 does, so we get:</p>
|
||
<p class="center larger">49 ÷ 7 = 7</p>
|
||
<p>And that is as far as we need to go, because all the factors are
|
||
prime numbers.</p>
|
||
<p class="center larger"><b>147 = 3 × 7 × 7</b></p>
|
||
<p class="center">(or <b>147 =
|
||
3 × 7<sup>2</sup></b> using exponents)</p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What is the prime factorization of 17 ?</h3>
|
||
<p>Hang on ... <b>17 is a Prime Number</b>.</p>
|
||
<p>So that is as far as we can go.</p>
|
||
<p class="center"><span class="larger"><b>17 =
|
||
17</b></span></p>
|
||
</div>
|
||
|
||
|
||
<h2>Another Method</h2>
|
||
|
||
<p>We showed you how to do the factorization by starting at the smallest prime and working upwards.</p>
|
||
<p>But sometimes it is easier to break a number down into <b>any factors</b> you can ... then work those factor down to primes.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: What are the prime factors of 90 ?</h3>
|
||
<p>Break 90 into 9 × 10</p>
|
||
<ul>
|
||
<li>The prime factors of 9 are <b>3 and 3</b></li>
|
||
<li>The prime factors of 10 are <b>2 and 5</b></li>
|
||
</ul>
|
||
<p>So the prime factors of 90 are <b>3, 3, 2 and 5</b></p>
|
||
</div>
|
||
|
||
|
||
<h2>Factor Tree</h2>
|
||
|
||
<p>And a "Factor Tree" can help: find <b>any factors</b> of the number, then the factors of those numbers, etc, until we can't factor any more.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: 48</h3>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="numbers/images/factor-tree-48.svg" alt="factor tree 48 = 2 x 2 x 2 x 2 x 3" height="253" width="229" ></p>
|
||
<p><b>48 = 8 × 6</b>, so we write down "8" and "6" below 48</p>
|
||
<p>Now we continue and factor 8 into <b>4 × 2</b></p>
|
||
<p>Then 4 into <b>2 × 2</b></p>
|
||
<p>And lastly 6 into <b>3 × 2</b></p>
|
||
<p> </p>
|
||
<p>We can't factor any more, so we have found the prime factors.</p>
|
||
<p>Which reveals that <b>48 = 2 × 2 × 2 × 2 × 3</b></p>
|
||
<p>(or <b>48 =
|
||
2<sup>4</sup> × 3</b> using exponents)</p>
|
||
</div>
|
||
|
||
|
||
<h2>Why find Prime Factors?</h2>
|
||
|
||
<p>A prime number can only be divided by 1 or itself, so it cannot
|
||
be factored any further!</p>
|
||
<p>Every other whole number can be broken down into prime number factors.</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="large"><img src="numbers/images/blocks223.svg" alt="blocks 2 2 3" height="125" width="149" ></span></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>It is like the Prime Numbers are the <b>basic building blocks</b> of all numbers.</p></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>This idea can be very useful when working with big numbers, such as in Cryptography.</p>
|
||
|
||
|
||
<h2>Cryptography</h2>
|
||
|
||
<p>Cryptography is the study of secret codes. Prime Factorization is very important to people who try
|
||
to make (or break) secret codes based on numbers.</p>
|
||
<p>That is because factoring very large numbers is very hard, and can take computers a long time to do.</p>
|
||
<p>If you want to
|
||
know more, the subject is "encryption" or "cryptography".</p>
|
||
|
||
|
||
<h2>Unique</h2>
|
||
|
||
<p>And here is another thing:</p>
|
||
<p class="center"><b>There is only one (unique!) set of prime factors for any number.</b></p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: the prime factors of 330 are 2, 3, 5 and 11</h3>
|
||
<p class="center"><span class="large">330 = 2 × 3 × 5</span><span class="large"> × 11</span></p>
|
||
<p>There is no other possible set of prime numbers that can be multiplied to make 330.</p>
|
||
</div>
|
||
<p>In fact this idea is so important it is called the <b><a href="numbers/fundamental-theorem-arithmetic.html">Fundamental Theorem of Arithmetic</a></b>.</p>
|
||
|
||
|
||
<h2>Prime Factorization Tool</h2>
|
||
|
||
<p>OK, we have one more method ... use our <a href="numbers/prime-factorization-tool.html">Prime Factorization Tool</a> that can work out the prime factors for numbers up to
|
||
4,294,967,296.</p>
|
||
<p> </p>
|
||
<div class="questions">370, 1055, 1694, 1695, 1696, 1697</div>
|
||
|
||
<div class="related">
|
||
<a href="prime-composite-number.html">Prime and Composite Numbers</a>
|
||
<a href="prime_numbers.html">Prime Numbers Chart</a>
|
||
<a href="numbers/prime-factorization-tool.html">Prime Factorization Tool</a>
|
||
<a href="divisibility-rules.html">Divisibility Rules</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/prime-factorization.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:36 GMT -->
|
||
</html>
|