new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
418 lines
17 KiB
HTML
418 lines
17 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/physics/light.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:51:10 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Light</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
|
||
|
||
<script>reSpell=[["meter","metre"],["meters","metres"],["nanometer","nanometre"],["color","colour"],["colors","colours"],["fiber","fibre"]];</script>
|
||
|
||
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Light</h1>
|
||
|
||
<p>We use light to see!</p>
|
||
<!-- <p>Plants also use light for photosynthesis (the energy from light helps them convert chemicals).</p>
|
||
--> <p>Visible light is the part of the <a href="electromagnetic-spectrum.html">electromagnetic spectrum</a> that our eyes can see:</p>
|
||
<div class="script" style="height: 260px;">
|
||
images/em-spectrum.js
|
||
</div>
|
||
<p>It is only a small part of the full spectrum, isn't it?</p>
|
||
|
||
|
||
<h2>Visible Spectrum</h2>
|
||
|
||
<p class="words"><b>Visible Light</b>: the wavelengths that are visible to most human eyes.</p>
|
||
<p class="center">The main colors, in order, go "Roy G Bv": <b>R</b>ed <b>O</b>range <b>Y</b>ellow <b>G</b>reen <b>B</b>lue <b>V</b>iolet<br>
|
||
<img src="images/light-spectrum.svg" alt="light spectrum" height="154" width="498"></p>
|
||
<p class="center">As we see on this beautiful rainbow:<br>
|
||
<img src="images/rainbow.jpg" alt="rainbow" height="209" width="360"></p>
|
||
|
||
|
||
<h2>Wavelength</h2>
|
||
|
||
<p class="center"><img src="images/wavelength.svg" alt="wavelength" height="153" width="404"></p>
|
||
<p>Light has a <a href="../definitions/wavelength.html">wavelength</a> of about 380 nm to 750 nm, depending on color.</p>
|
||
<div class="def">
|
||
<p><b>nm</b> means <b>nanometer</b>, one billionth of a meter.</p>
|
||
<p>Example: <b><span style="color:red;">red light</span></b> has a wavelength of about 700 billionths of a meter (just less than one-millionth of a meter). Small!</p></div>
|
||
<p>Definitions vary, but here is a rough guide:</p>
|
||
<div class="simple">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<th>Color</th>
|
||
<th align="center">Wavelength Range (nm)</th>
|
||
</tr>
|
||
<tr>
|
||
<td>Red </td>
|
||
<td style="text-align:center;">620–750</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Orange</td>
|
||
<td style="text-align:center;">590–620</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Yellow</td>
|
||
<td style="text-align:center;">570–590</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Green</td>
|
||
<td style="text-align:center;">495–570</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Blue</td>
|
||
<td style="text-align:center;">450–495</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Violet</td>
|
||
<td style="text-align:center;">380–450</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
|
||
|
||
<h2>Frequency</h2>
|
||
|
||
<p>The <b>frequency</b> of red light is about 400 THz (and for violet is about 800 THz)</p>
|
||
<div class="def">
|
||
<p><b>THz</b> means <b>teraHertz</b>, a trillion cycles per second</p>
|
||
<p>So red light vibrates at about 400 million <i>million</i> cycles per second. Fast!</p>
|
||
</div>
|
||
<p>Higher frequency (with shorter wavelength) has more energy:</p>
|
||
<ul>
|
||
<li>Red light has lower frequency, longer wavelength and less energy</li>
|
||
<li>Blue light has higher frequency, shorter wavelength and more energy</li>
|
||
</ul>
|
||
<p class="center"><img src="images/light-red-blue.svg" alt="red lower energy, blue higher energy" height="245" width="338"></p>
|
||
|
||
|
||
<h2>Speed of Light</h2>
|
||
|
||
<p>Light travels at almost <b>300,000,000 meters per second</b> (to be exact: 299,792,458 meters per second) in a vacuum.</p>
|
||
<p>That is <b>300 million meters</b> every second, or:</p>
|
||
<ul>
|
||
<li>3 × 10<sup>8</sup> m/s</li>
|
||
<li>300,000 km/s</li>
|
||
<li>186,000 miles per second</li>
|
||
</ul>
|
||
<p>At that speed light travels:</p>
|
||
<div class="simple">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<th>Distance</th>
|
||
<th> </th>
|
||
<th>Time</th>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">1 meter</td>
|
||
<td style="text-align:center;">in</td>
|
||
<td style="text-align:center;">3.3 ns (3.3 billionths of a second)</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">Around the Earth's equator</td>
|
||
<td style="text-align:center;">in</td>
|
||
<td style="text-align:center;">134 ms (134 thousandths of a second)</td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">From Earth to Moon</td>
|
||
<td style="text-align:center;">in</td>
|
||
<td style="text-align:center;">1.3 s </td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:center;">Surface of Sun to Earth</td>
|
||
<td style="text-align:center;">in</td>
|
||
<td style="text-align:center;">about 8 minutes </td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p>It is so fast, but still takes about 8 minutes from the surface of the Sun to the Earth.</p>
|
||
<p>The symbol for this speed is <span class="times">c</span>:</p>
|
||
<p class="center large"><b>c</b> ≈ 300,000,000 m/s</p>
|
||
|
||
|
||
<h2>Light Can Travel Slower</h2>
|
||
|
||
<p>We really shouldn't call it the speed of <b>light</b>, firstly because it applies to the whole electromagnetic spectrum, and gravity waves, and more. Maybe we could call it "Max Speed"!</p>
|
||
<p>But also because light <b>only travels that speed in a vacuum</b>! It can travel slower ...</p>
|
||
<div class="simple">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<th>Medium</th>
|
||
<th align="center"><b>Speed</b><br>
|
||
million m/s</th>
|
||
</tr>
|
||
<tr>
|
||
<td>Vacuum</td>
|
||
<td style="text-align:center;">299.8</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Air</td>
|
||
<td style="text-align:center;">299.7</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Ice</td>
|
||
<td style="text-align:center;">228</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Water</td>
|
||
<td style="text-align:center;">225</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Ethanol</td>
|
||
<td style="text-align:center;">220</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Glass</td>
|
||
<td style="text-align:center;">205</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Olive oil</td>
|
||
<td style="text-align:center;">204</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Diamond</td>
|
||
<td style="text-align:center;">123</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
|
||
|
||
<h2>Wavelength and Frequency are Linked</h2>
|
||
|
||
<p>The Wavelength and Frequency are related:</p>
|
||
<p class="large center"><span style="color:blue">Frequency</span> = <span class="intbl">
|
||
<em>Velocity</em>
|
||
<span style="color:orange">Wavelength</span></span></p>
|
||
<p class="large center"><span style="color:orange">Wavelength</span> = <span class="intbl">
|
||
<em>Velocity</em>
|
||
<strong><span style="color:blue">Frequency</span></strong>
|
||
</span></p>
|
||
<p>Assuming the light is in a vacuum, the velocity is the speed of light: <b>3 × 10<sup>8</sup> m/s</b></p>
|
||
<p>Let's try a simple example (in this case <i>not</i> a wavelength of light):</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Imagine a very long wavelength of 75,000 km</h3>
|
||
<p class="center"><img src="images/wavelength-vs-frequency.svg" alt="wavelength vs frequency" height="151" width="404"></p>
|
||
<p class="large center"><span style="color:blue">Frequency</span> = <span class="intbl">
|
||
<em>300,000 km/s</em>
|
||
<strong><span style="color:orange">75,000 km</span></strong></span></p>
|
||
<p class="large center">= <span style="color:blue">4 /s</span></p>
|
||
<p class="large center">= <span style="color:blue">4 Hz</span></p>
|
||
<p>We can fit <b>4</b> of those wavelengths in 300,000 km, so it vibrates 4 times in 1 second.</p>
|
||
<p>So the frequency is 4 Hz (4 per second)</p>
|
||
<p>Or, the other way around, if we know it vibrates 4 times a second we can calculate its wavelength:</p>
|
||
<p class="large center"><span style="color:orange">Wavelength</span> = <span class="intbl">
|
||
<em>300,000 km/s</em>
|
||
<strong><span style="color:blue">4 /s</span></strong>
|
||
</span></p>
|
||
<p class="large center"> = <span style="color:orange">75,000 km</span></p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Blue light has a wavelength of about 480 nm (480 × 10<sup>-9</sup> m)</h3>
|
||
<p>So the frequency is:</p>
|
||
<p class="large center"><span style="color:blue">Frequency</span> = <span class="intbl">
|
||
<em>3 × 10<sup>8</sup> m/s</em>
|
||
<strong><span style="color:orange">480 × 10<sup>-9</sup> m</span></strong></span></p>
|
||
<p class="large center">= <span style="color:blue">6.25 × 10<sup>14</sup> /s</span></p>
|
||
<p class="large center">= <span style="color:blue">6.25 × 10<sup>14</sup> Hz</span></p>
|
||
<p>Which is 625 TeraHertz</p></div>
|
||
|
||
|
||
<h2>Light Travels in Straight Lines</h2>
|
||
|
||
<p>Light <b>travels in a straight line</b> until its hits something, or it's path is changed by different densities, or by gravity.</p>
|
||
<p class="center"><img src="images/light-beams-forest.jpg" alt="light beams forest" height="244" width="600"><br>
|
||
Light from the Sun streams across the road.<br>
|
||
The shadows also show that light travels in straight lines.</p>
|
||
<p class="center"><img src="images/light-beam.jpg" alt="light beam" height="191" width="594"><br>
|
||
This light spreads out a little and is scattered by the atmosphere.</p>
|
||
<p class="center"><img src="images/laser-beams.jpg" alt="laser beams" height="262" width="600"><br>
|
||
Laser beams making straight lines.</p>
|
||
<p> </p>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/refraction-plastic-block.jpg" alt="refraction plastic block" height="227" width="240"></p>
|
||
|
||
|
||
<h2>Wave</h2>
|
||
|
||
<p>Light behaves as a wave, so it can:</p>
|
||
<ul>
|
||
<li><a href="reflection.html">reflect</a> (bounce off),</li>
|
||
<li>scatter (bounce off in all directions),</li>
|
||
<li><a href="refraction.html">refract</a> (change speed and direction)</li>
|
||
<li><a href="diffraction.html">diffract</a> (spread out past an opening)</li>
|
||
<li>transmit (pass straight through)</li>
|
||
<li>or get absorbed</li>
|
||
</ul>
|
||
|
||
|
||
<h2><span class="center">Photons</span></h2>
|
||
|
||
<p><span class="center">Light <b>also</b></span> behaves as packets of energy called <b>Photons</b>.</p>
|
||
<ul>
|
||
<li>We can measure a photon's position and momentum.</li>
|
||
<li>Photons have no mass, but each photon has an amount of energy based on its frequency (number of vibrations per second)</li>
|
||
<li>Each photon has a wavelength</li>
|
||
</ul>
|
||
<p> </p>
|
||
<p>So it is like a <b>particle</b> and also like a <b>wave</b>. This is called the "wave-particle duality".</p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/einstein.jpg" alt="einstein" height="217" width="200"></p>
|
||
<p> </p>
|
||
<p>Einstein wrote:</p>
|
||
<p><i>"It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either."</i></p>
|
||
<div style="clear:both"></div>
|
||
|
||
|
||
<h2>Intensity</h2>
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"> </p>
|
||
<p>Intensity is <b>power per area</b>, usually in Watts per square meter:</p>
|
||
<p class="center larger">Intensity = W/m<sup>2</sup></p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Sun on a small 100 square meter house</h3>
|
||
<p>About 150 to 300 <b>watts</b> of energy are received from the Sun <b>per square meter</b>.</p>
|
||
<p>Let's choose the smaller number:</p>
|
||
<p class="center large">Intensity = 150 W/m<sup>2</sup></p>
|
||
<p>How much Power is that over the whole roof?</p>
|
||
<p class="center large">Power = 150 W/m<sup>2</sup> × 100 m<sup>2</sup></p>
|
||
<p class="center large">Power = 15,000 W</p>
|
||
<p>So a small house gets about <b>15 kilowatts</b> on it's roof, which is <b>several times more than a household uses.</b></p>
|
||
<p>But that is only while the Sun shines, and only about 20% can be captured by typical solar panels</p>
|
||
<p>But that is still lots of energy from the Sun.</p>
|
||
</div>
|
||
|
||
|
||
<h2>Inverse Square</h2>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="../algebra/images/proportion-inverse-square.svg" alt="brightness decreases by the square of the distance" height="" width=""></p>
|
||
<p>
|
||
|
||
</p>
|
||
<p class="large"><span><b>Inverse Square</b></span>: when one value <b>decreases</b> as the square of the other value.</p>
|
||
<div style="clear:both">
|
||
|
||
</div>
|
||
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: light and distance</h3>
|
||
<p>The further away we are from a light, the less bright it is.</p>
|
||
<p class="center"><img src="images/inverse-square-law.svg" alt="inverse square law: distance=1 area=1 intensity=1, distance=2 area=4 intensity=0.25, distance=3 area=9 intensity=0.111..." height="265" width="480"></p>
|
||
<p>The brightness decreases as the <b>square</b> of the distance. Because the light is spreading out in all directions:</p>
|
||
<ul>
|
||
<li>the energy twice as far away is spread over 4 times the area</li>
|
||
<li>the energy 3 times as far away is spread over 9 times the area</li>
|
||
<li>etc</li>
|
||
</ul>
|
||
</div>
|
||
|
||
|
||
<h2>Polarization</h2>
|
||
|
||
<p>Light is normally free to vibrate in any direction at right angles to its path.</p>
|
||
<p>But <b>polarized</b> light vibrates in one plane only:</p>
|
||
<p class="center"><img src="images/polarized.svg" alt="unpolarized vs polarized" height="162" width="365"><br>
|
||
Light gets partly polarized when it<br>
|
||
bounces off surfaces like water or glass.</p>
|
||
<p><b>Polarizing lenses</b> can block light from that plane, to cut down on reflected light and make it easier to see into water:</p>
|
||
<p class="center"><img src="images/polarized-water.jpg" alt="polarized picture of water" height="148" width="400"><br>
|
||
<b>Without</b> and <b>with</b> a polarizing lens</p>
|
||
|
||
|
||
<h2>Fiber Optics</h2>
|
||
|
||
<p>Light, and <a href="infrared.html">infrared</a>, can be sent along fiber optic cables, carrying information coded into the wavelength.</p>
|
||
<p class="center"><img src="images/fiber-optic.jpg" alt="fiber optic" height="242" width="360"><br>
|
||
Fiber optic cables</p>
|
||
<p>The light stays inside because of a special property of <a href="refraction.html">refraction</a>: when the refractive index is lower on the outside, and the angle is not too steep, the light beam has <b>total internal reflection</b> on the inside:</p>
|
||
<p class="center"><img src="images/fiber-optic-bounce.svg" alt="fiber optic bounce inside" height="118" width="453"><br>
|
||
Light bounces off the walls inside the cable</p>
|
||
<p>Fiber optic cables are <b>much better than electrical wires:</b></p>
|
||
<ul>
|
||
<li>Wires get more "noise" (other signals that distort or interfere with the original) from power lines, TV, radio, lightning etc.</li>
|
||
<li>Photons have no mass so can swap between 0 and 1 quickly. Electrons have mass and are slow in comparison</li>
|
||
<li>Glass has much less resistance to light than copper does to electrical signals, so can go much further without needing a boost</li>
|
||
</ul>
|
||
<p> </p>
|
||
<div class="questions">17760, 17763, 17764, 17766, 17767, 17761, 17762, 17765, 17768, 17769</div>
|
||
|
||
<div class="related">
|
||
<a href="electromagnetic-spectrum.html">Electromagnetic Spectrum</a>
|
||
<a href="index.html">Physics Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/physics/light.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:51:21 GMT -->
|
||
</html> |