Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

418 lines
17 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/physics/light.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:51:10 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Light</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<script>reSpell=[["meter","metre"],["meters","metres"],["nanometer","nanometre"],["color","colour"],["colors","colours"],["fiber","fibre"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Light</h1>
<p>We use light to see!</p>
<!-- <p>Plants also use light for photosynthesis (the energy from light helps them convert chemicals).</p>
--> <p>Visible light is the part of the <a href="electromagnetic-spectrum.html">electromagnetic spectrum</a> that our eyes can see:</p>
<div class="script" style="height: 260px;">
images/em-spectrum.js
</div>
<p>It is only a small part of the full spectrum, isn't it?</p>
<h2>Visible Spectrum</h2>
<p class="words"><b>Visible Light</b>: the wavelengths that are visible to most human eyes.</p>
<p class="center">The main colors, in order, go "Roy G Bv": <b>R</b>ed <b>O</b>range <b>Y</b>ellow <b>G</b>reen <b>B</b>lue <b>V</b>iolet<br>
<img src="images/light-spectrum.svg" alt="light spectrum" height="154" width="498"></p>
<p class="center">As we see on this beautiful rainbow:<br>
<img src="images/rainbow.jpg" alt="rainbow" height="209" width="360"></p>
<h2>Wavelength</h2>
<p class="center"><img src="images/wavelength.svg" alt="wavelength" height="153" width="404"></p>
<p>Light has a <a href="../definitions/wavelength.html">wavelength</a> of about 380 nm to 750 nm, depending on color.</p>
<div class="def">
<p><b>nm</b> means <b>nanometer</b>, one billionth of a meter.</p>
<p>Example: <b><span style="color:red;">red light</span></b> has a wavelength of about 700 billionths of a meter (just less than one-millionth of a meter). Small!</p></div>
<p>Definitions vary, but here is a rough guide:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th>Color</th>
<th align="center">Wavelength Range (nm)</th>
</tr>
<tr>
<td>Red </td>
<td style="text-align:center;">620750</td>
</tr>
<tr>
<td>Orange</td>
<td style="text-align:center;">590620</td>
</tr>
<tr>
<td>Yellow</td>
<td style="text-align:center;">570590</td>
</tr>
<tr>
<td>Green</td>
<td style="text-align:center;">495570</td>
</tr>
<tr>
<td>Blue</td>
<td style="text-align:center;">450495</td>
</tr>
<tr>
<td>Violet</td>
<td style="text-align:center;">380450</td>
</tr>
</tbody></table>
</div>
<h2>Frequency</h2>
<p>The <b>frequency</b> of red light is about 400 THz (and for violet is about 800 THz)</p>
<div class="def">
<p><b>THz</b> means <b>teraHertz</b>, a trillion cycles per second</p>
<p>So red light vibrates at about 400 million <i>million</i> cycles per second. Fast!</p>
</div>
<p>Higher frequency (with shorter wavelength) has more energy:</p>
<ul>
<li>Red light has lower frequency, longer wavelength and less energy</li>
<li>Blue light has higher frequency, shorter wavelength and more energy</li>
</ul>
<p class="center"><img src="images/light-red-blue.svg" alt="red lower energy, blue higher energy" height="245" width="338"></p>
<h2>Speed of Light</h2>
<p>Light travels at almost <b>300,000,000 meters per second</b> (to be exact: 299,792,458&nbsp;meters per second) in a vacuum.</p>
<p>That is <b>300 million meters</b> every second, or:</p>
<ul>
<li>3 × 10<sup>8</sup> m/s</li>
<li>300,000 km/s</li>
<li>186,000 miles per second</li>
</ul>
<p>At that speed light travels:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th>Distance</th>
<th>&nbsp;</th>
<th>Time</th>
</tr>
<tr>
<td style="text-align:center;">1 meter</td>
<td style="text-align:center;">in</td>
<td style="text-align:center;">3.3 ns (3.3 billionths of a second)</td>
</tr>
<tr>
<td style="text-align:center;">Around the Earth's equator</td>
<td style="text-align:center;">in</td>
<td style="text-align:center;">134 ms (134 thousandths of a second)</td>
</tr>
<tr>
<td style="text-align:center;">From Earth to Moon</td>
<td style="text-align:center;">in</td>
<td style="text-align:center;">1.3 s </td>
</tr>
<tr>
<td style="text-align:center;">Surface of Sun to Earth</td>
<td style="text-align:center;">in</td>
<td style="text-align:center;">about 8 minutes </td>
</tr>
</tbody></table>
</div>
<p>It is so fast, but still takes about 8 minutes from the surface of the Sun to the Earth.</p>
<p>The symbol for this speed is <span class="times">c</span>:</p>
<p class="center large"><b>c</b> ≈ 300,000,000 m/s</p>
<h2>Light Can Travel Slower</h2>
<p>We really shouldn't call it the speed of <b>light</b>, firstly because it applies to the whole electromagnetic spectrum, and gravity waves, and more. Maybe we could call it "Max Speed"!</p>
<p>But also because light <b>only travels that speed in a vacuum</b>! It can travel slower ...</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th>Medium</th>
<th align="center"><b>Speed</b><br>
million m/s</th>
</tr>
<tr>
<td>Vacuum</td>
<td style="text-align:center;">299.8</td>
</tr>
<tr>
<td>Air</td>
<td style="text-align:center;">299.7</td>
</tr>
<tr>
<td>Ice</td>
<td style="text-align:center;">228</td>
</tr>
<tr>
<td>Water</td>
<td style="text-align:center;">225</td>
</tr>
<tr>
<td>Ethanol</td>
<td style="text-align:center;">220</td>
</tr>
<tr>
<td>Glass</td>
<td style="text-align:center;">205</td>
</tr>
<tr>
<td>Olive oil</td>
<td style="text-align:center;">204</td>
</tr>
<tr>
<td>Diamond</td>
<td style="text-align:center;">123</td>
</tr>
</tbody></table>
</div>
<h2>Wavelength&nbsp;and Frequency are Linked</h2>
<p>The Wavelength and Frequency are related:</p>
<p class="large center"><span style="color:blue">Frequency</span> = <span class="intbl">
<em>Velocity</em>
<span style="color:orange">Wavelength</span></span></p>
<p class="large center"><span style="color:orange">Wavelength</span> = <span class="intbl">
<em>Velocity</em>
<strong><span style="color:blue">Frequency</span></strong>
</span></p>
<p>Assuming the light is in&nbsp;a vacuum, the velocity is the speed of light: <b>3 × 10<sup>8</sup> m/s</b></p>
<p>Let's try a simple example (in this case <i>not</i> a wavelength of light):</p>
<div class="example">
<h3>Imagine a very long wavelength of 75,000 km</h3>
<p class="center"><img src="images/wavelength-vs-frequency.svg" alt="wavelength vs frequency" height="151" width="404"></p>
<p class="large center"><span style="color:blue">Frequency</span> = <span class="intbl">
<em>300,000 km/s</em>
<strong><span style="color:orange">75,000 km</span></strong></span></p>
<p class="large center">= <span style="color:blue">4 /s</span></p>
<p class="large center">= <span style="color:blue">4 Hz</span></p>
<p>We can fit <b>4</b> of those wavelengths in 300,000 km, so it vibrates 4 times in 1 second.</p>
<p>So the frequency is 4 Hz (4 per second)</p>
<p>Or, the other way around, if we know it vibrates 4 times a second we can calculate its wavelength:</p>
<p class="large center"><span style="color:orange">Wavelength</span> = <span class="intbl">
<em>300,000 km/s</em>
<strong><span style="color:blue">4 /s</span></strong>
</span></p>
<p class="large center">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; = <span style="color:orange">75,000 km</span></p>
</div>
<div class="example">
<h3>Example: Blue light has a wavelength of about 480 nm (480 × 10<sup>-9</sup> m)</h3>
<p>So the frequency is:</p>
<p class="large center"><span style="color:blue">Frequency</span> = <span class="intbl">
<em>3 × 10<sup>8</sup> m/s</em>
<strong><span style="color:orange">480 × 10<sup>-9</sup> m</span></strong></span></p>
<p class="large center">= <span style="color:blue">6.25 × 10<sup>14</sup> /s</span></p>
<p class="large center">= <span style="color:blue">6.25 × 10<sup>14</sup> Hz</span></p>
<p>Which is 625 TeraHertz</p></div>
<h2>Light Travels in Straight Lines</h2>
<p>Light <b>travels in a straight line</b> until its hits something, or it's path is changed by different densities, or by gravity.</p>
<p class="center"><img src="images/light-beams-forest.jpg" alt="light beams forest" height="244" width="600"><br>
Light from the Sun streams across the road.<br>
The shadows also show that light travels in straight lines.</p>
<p class="center"><img src="images/light-beam.jpg" alt="light beam" height="191" width="594"><br>
This light spreads out a little and is scattered by the atmosphere.</p>
<p class="center"><img src="images/laser-beams.jpg" alt="laser beams" height="262" width="600"><br>
Laser beams making straight lines.</p>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/refraction-plastic-block.jpg" alt="refraction plastic block" height="227" width="240"></p>
<h2>Wave</h2>
<p>Light behaves as a wave, so it can:</p>
<ul>
<li><a href="reflection.html">reflect</a> (bounce off),</li>
<li>scatter (bounce off in all directions),</li>
<li><a href="refraction.html">refract</a> (change speed and direction)</li>
<li><a href="diffraction.html">diffract</a> (spread out past an opening)</li>
<li>transmit (pass straight through)</li>
<li>or get absorbed</li>
</ul>
<h2><span class="center">Photons</span></h2>
<p><span class="center">Light <b>also</b></span> behaves as packets of energy called <b>Photons</b>.</p>
<ul>
<li>We can measure a photon's position and momentum.</li>
<li>Photons have no mass, but each photon has an amount of energy based on its frequency (number of vibrations per second)</li>
<li>Each photon has a wavelength</li>
</ul>
<p>&nbsp;</p>
<p>So it is like a <b>particle</b> and also like a <b>wave</b>. This is called the "wave-particle duality".</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/einstein.jpg" alt="einstein" height="217" width="200"></p>
<p>&nbsp;</p>
<p>Einstein wrote:</p>
<p><i>"It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either."</i></p>
<div style="clear:both"></div>
<h2>Intensity</h2>
<p style="float:right; margin: 0 0 5px 10px;">&nbsp;</p>
<p>Intensity is <b>power per area</b>, usually in Watts per square meter:</p>
<p class="center larger">Intensity = W/m<sup>2</sup></p>
<div class="example">
<h3>Example: Sun on a small 100 square meter house</h3>
<p>About 150 to 300 <b>watts</b> of energy are received from the Sun <b>per square meter</b>.</p>
<p>Let's choose the smaller number:</p>
<p class="center large">Intensity = 150 W/m<sup>2</sup></p>
<p>How much Power is that over the whole roof?</p>
<p class="center large">Power = 150 W/m<sup>2</sup> × 100 m<sup>2</sup></p>
<p class="center large">Power = 15,000 W</p>
<p>So a small house gets about <b>15 kilowatts</b> on it's roof, which is <b>several times more than a household uses.</b></p>
<p>But that is only while the Sun shines, and only about 20% can be captured by typical solar panels</p>
<p>But that is still lots of energy from the Sun.</p>
</div>
<h2>Inverse Square</h2>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../algebra/images/proportion-inverse-square.svg" alt="brightness decreases by the square of the distance" height="" width=""></p>
<p>
&nbsp;
</p>
<p class="large"><span><b>Inverse Square</b></span>: when one value <b>decreases</b> as the square of the other value.</p>
<div style="clear:both">
</div>
<div class="example">
<h3>Example: light and distance</h3>
<p>The further away we are from a light, the less bright it is.</p>
<p class="center"><img src="images/inverse-square-law.svg" alt="inverse square law: distance=1 area=1 intensity=1, distance=2 area=4 intensity=0.25, distance=3 area=9 intensity=0.111..." height="265" width="480"></p>
<p>The brightness decreases as the <b>square</b> of the distance. Because the light is spreading out in all directions:</p>
<ul>
<li>the energy twice as far away is spread over 4 times the area</li>
<li>the energy 3 times as far away is spread over 9 times the area</li>
<li>etc</li>
</ul>
</div>
<h2>Polarization</h2>
<p>Light is normally free to vibrate in any direction at right angles to its path.</p>
<p>But <b>polarized</b> light vibrates in one plane only:</p>
<p class="center"><img src="images/polarized.svg" alt="unpolarized vs polarized" height="162" width="365"><br>
Light gets partly polarized when it<br>
bounces off surfaces like water or glass.</p>
<p><b>Polarizing lenses</b> can block light from that plane, to cut down on reflected light and make it easier to see into water:</p>
<p class="center"><img src="images/polarized-water.jpg" alt="polarized picture of water" height="148" width="400"><br>
<b>Without</b> and <b>with</b> a polarizing lens</p>
<h2>Fiber Optics</h2>
<p>Light, and <a href="infrared.html">infrared</a>, can be sent along fiber optic cables, carrying information coded into the wavelength.</p>
<p class="center"><img src="images/fiber-optic.jpg" alt="fiber optic" height="242" width="360"><br>
Fiber optic cables</p>
<p>The light stays inside because of a special property of <a href="refraction.html">refraction</a>: when the refractive index is lower on the outside, and the angle is not too steep, the light beam has <b>total internal reflection</b> on the inside:</p>
<p class="center"><img src="images/fiber-optic-bounce.svg" alt="fiber optic bounce inside" height="118" width="453"><br>
Light bounces off the walls inside the cable</p>
<p>Fiber optic cables are <b>much better than electrical wires:</b></p>
<ul>
<li>Wires get more "noise" (other signals that distort or interfere with the original) from power lines, TV, radio, lightning etc.</li>
<li>Photons have no mass so can swap between 0 and 1 quickly. Electrons have mass and are slow in comparison</li>
<li>Glass has much less resistance to light than copper does to electrical signals, so can go much further without needing a boost</li>
</ul>
<p>&nbsp;</p>
<div class="questions">17760, 17763, 17764, 17766, 17767, 17761, 17762, 17765, 17768, 17769</div>
<div class="related">
<a href="electromagnetic-spectrum.html">Electromagnetic Spectrum</a>
<a href="index.html">Physics Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/physics/light.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:51:21 GMT -->
</html>