Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

435 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/nth-root.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:16 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>nth Roots</title>
<style>
.nthroot {font-size:75%;display:inline-block; margin-left: -0.5em; transform: translateX(0.8em) translateY(-1em);}
.vertellip { position: relative; margin: 0.1rem; }
.vertellip:after {
content: '';
position: absolute;
left: 50%;
top: 50%;
width: 0.1rem;
height: 0.1rem;
background: currentcolor;
border-radius: 50%;
box-shadow: 0 0 0 0.1rem, 0 0.6rem 0 0.1rem, 0 -0.6rem 0 0.1rem;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">nth Root</h1>
<p class="center"><i>The "nth Root" used <b>n times</b> in a <b>multiplication</b> gives the original value</i></p>
<h2>" nth ? "</h2>
<p class="center larger"><b>1</b>st, <b>2</b>nd, <b>3</b>rd, <b>4</b>th, <b>5</b>th, ... <b>n</b>th ...</p>
<p>Instead of talking about the "4th", "16th", etc, we can just say the "<span class="large"><i><b>n</b>th</i> </span>".</p>
<h2>The nth Root</h2>
<ul>
<li>The "2nd" root is the <a href="../square-root.html">square root</a></li>
<li>The "3rd" root is the <a href="cube-root.html">cube root</a></li>
<li>etc!</li>
</ul><br>
<div class="simple">
<table style="border: 0;">
<tbody>
<tr>
<td class="largest" align="center">2</td>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center; width:260px;">
<span class="nthroot"> </span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:170%;">×</span>
<span class="nthroot"> </span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:140%;"> = a</span>
</td>
<td>&nbsp;</td>
<td>The <b>square root</b> used <b>two</b> times in a multiplication gives the original value.</td>
</tr>
<tr>
<td class="largest" align="center">3</td>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:170%;">×</span>
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:170%;">×</span>
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:140%;"> = a</span>
</td>
<td>&nbsp;</td>
<td> The <b>cube root</b> used <b>three</b> times in a multiplication gives the original value.</td>
</tr>
<tr>
<td style="text-align:center;"><span class="vertellip"></span><br>
</td>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="vertellip"></span><br>
</td>
<td>&nbsp;</td>
<td style="text-align:center;"><span class="vertellip"></span><br>
</td>
</tr>
<tr>
<td class="largest" align="center">n</td>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:170%;">×</span>
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:170%;">×</span>
<span style="font-size:130%;">...</span>
<span style="font-size:170%;">×</span>
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:130%;"> = a</span><br>
<i>(n of them)</i>
</td>
<td>&nbsp;</td>
<td>The <b>nth root</b> used <b>n</b> times in a multiplication gives the original value.</td>
</tr>
</tbody></table>
</div><br>
<div class="def">
<p class="center larger">So it is the <b>general</b> way of talking about roots<br>
(so it could be 2nd, or 9th, or 324th, or whatever)</p>
</div>
<h2>The nth Root Symbol</h2>
<p style="float:left; margin: 0 30px 5px 0;">&nbsp; <img src="images/nth-root-symbol.gif" alt="nth root symbol" height="54" width="30"></p>
<p>This is the special symbol that means "nth root",
it is the <i><b>"radical"</b></i> symbol (used for square roots) with a little <b>n</b> to mean <b>nth</b> root.</p>
<h2>Using it</h2>
<p>We could use the nth root in a question like this:</p>
<div class="example">
<p>Question: What is "n" in this equation?</p>
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">625</span> = 5</p>
<p>Answer: I just happen to know that <b>625 = 5<sup>4</sup></b> , so the <b>4</b>th root of 625 must be 5:</p>
<p class="center larger"><span class="nthroot">4</span><span style="font-size:120%;"></span><span class="overline">625</span> = 5</p>
</div>
<p>Or we could use "n" because we want to say general things:</p>
<div class="example">
<p>Example: When <b>n</b> is odd then &nbsp;
<span class="larger">
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a<sup>n</sup></span> = a
</span>
&nbsp; (we talk about this later).</p>
</div>
<h2>Why "Root" ... ?</h2>
<table align="center" width="80%" border="0">
<tbody>
<tr>
<td><img src="../algebra/images/tree-root.jpg" alt="tree root" height="118" width="67"></td>
<td>
<p>When you see "root" think</p>
<p><i>"I know the tree</i><i>, but what is the root that produced it?</i> "</p>
<p>Example: in <b>√9 = 3</b> the "tree" is <b>9</b> , and the root is <b>3</b> .</p></td>
</tr>
</tbody></table>
<h2>Properties</h2>
<p>Now we know what an nth root is, let us look at some properties:</p>
<h3>Multiplication and Division</h3>
<p>We can "pull apart" multiplications under the root sign like this:</p>
<p class="center"><span class=" larger">
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">ab</span> =
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span>
×
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">b</span>
</span><br>
(<i>Note: if n is even then a and b must both be ≥ 0)</i></p>
<p>This can help us simplify equations in algebra, and also make some calculations easier:</p>
<div class="example">
<h3>Example:</h3>
<p class="center"><span class=" larger">
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">128</span> =
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">64×2</span> =
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">64</span>
×
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">2</span> =
4<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">2</span>
</span></p>
<p>
So the cube root of 128 simplifies to 4 times the cube root of 2.
</p>
</div>
<p>It also works for division:</p>
<p class="center"><span class=" larger">
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a/b</span> =
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span style="font-size:140%;">/</span>
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">b</span>
</span><br>
(<i>a≥0 and b&gt;0)<br>
Note that b cannot be zero, as we can't divide by zero</i></p>
<div class="example">
<p>Example:</p>
<p class="center"><span class=" larger">
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">1/64</span> =
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">1</span>
<span style="font-size:140%;">/</span>
<span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">64</span> =
1/4
</span></p>
<p>
So the cube root of 1/64 simplifies to just one quarter.
</p>
</div>
<h3>Addition and Subtraction</h3>
<p>But we <b>cannot</b> do that kind of thing for additions or subtractions!</p>
<p class="center larger"><img src="../images/style/no.svg" alt="no!" style="vertical-align:middle;" height="30" width="30"> &nbsp;
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a + b</span>
<span style="font-size:140%;"></span>
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span> +
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">b</span></p>
<p class="center larger"><img src="../images/style/no.svg" alt="no!" style="vertical-align:middle;" height="30" width="30"> &nbsp;
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a b</span>
<span style="font-size:140%;"></span>
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span>
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">b</span></p>
<p class="center larger"><img src="../images/style/no.svg" alt="no!" style="vertical-align:middle;" height="30" width="30"> &nbsp;
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a<sup>n</sup> + b<sup>n</sup></span>
<span style="font-size:140%;"></span> a + b</p>
<div class="example">
<p>Example: <a href="../pythagoras.html">Pythagoras' Theorem</a> says</p>
<table style="border: 0;">
<tbody>
<tr>
<td><img src="../geometry/images/triangle-abc.svg" alt="Right angled triangle" height="109" width="189"></td>
<td>&nbsp;</td>
<td><span class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></td>
</tr>
</tbody></table>
<p>So we calculate c like this:</p>
<p class="center larger">c = <span style="font-size:120%;"></span><span class="overline">a<sup>2</sup> + b<sup>2</sup></span></p>
<p>Which is <b>not</b> the same as <b>c = a + b</b> , right?</p>
</div>
<p>It is an easy trap to fall into, so beware.</p>
<p>It also means that, unfortunately, additions and subtractions can be hard to deal with when under a root sign.</p>
<p>&nbsp;</p>
<h3>Exponents vs Roots</h3>
<p>An exponent on one side of "=" can be turned into a root on the other side of "=":</p>
<p class="center larger">If&nbsp; <b>a<sup>n</sup> = b</b>&nbsp; then&nbsp; <b>a =
<span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">b</span></b></p>
<p>Note: when n is even then b must be ≥ 0</p>
<div class="example">
<h3>Example:</h3>
<p class="center larger"><b>5<sup>4</sup> = 625</b>&nbsp; so&nbsp; <b>5 = <span class="nthroot">4</span><span style="font-size:120%;"></span><span class="overline">625</span></b></p>
</div>
<p>&nbsp;</p>
<h3>nth Root of a-to-the-nth-Power</h3>
<p>When a value has an <b><a href="../exponent.html">exponent</a> of n</b> and we take the <b>nth root</b> we <b>get the value back again</b> ...</p>
<table style="border: 0;">
<tbody>
<tr>
<td>
<p class="large">... when a is <b>positive</b> (or zero):</p></td>
<td><br></td>
<td style="width:10px;">&nbsp;</td>
<td><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
<td style="width:30px;">&nbsp;</td>
<td><i>(when <b>a ≥ 0</b> )</i> </td>
</tr>
</tbody></table>
<div class="example">
<p>Example: <img src="images/nth-root-3-2-3.svg" alt="root examples" style="vertical-align:middle; margin-left:20px;" height="34" width="91"></p>
</div>
<table style="border: 0;">
<tbody>
<tr>
<td>
<p class="large">... or when the <b>exponent is odd</b> :</p></td>
<td><br></td>
<td style="width:10px;">&nbsp;</td>
<td><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
<td style="width:30px;">&nbsp;</td>
<td><i> (when <b>n is odd</b> )</i> </td>
</tr>
</tbody></table>
<div class="example">
<p>Example:<img src="images/nth-root-3-m2-3.svg" alt="root examples" style="vertical-align:middle; margin-left:20px;" height="34" width="114"></p>
</div>
<p class="larger">... but when <b>a is negative</b> and the <b>exponent is even</b> we get this:</p>
<p class="center"><img src="images/nth-root-2-m3-2.svg" alt="Square root of square" height="34" width="117"></p>
<p class="center">Did you see that 3 became +3 ?</p>
<table style="border: 0;">
<tbody>
<tr>
<td class="large">... so we must do this:</td>
<td><br></td>
<td style="width:10px;">&nbsp;</td>
<td><img src="images/nth-root-n-a-n-abs.svg" alt="nth root a^n = abs(a)" height="34" width="110"></td>
<td style="width:30px;">&nbsp;</td>
<td><i>(when <b>a &lt; 0</b> and <b>n is even</b> )</i><br>
</td>
</tr>
</tbody></table>
<p>The <b class="large">|a|</b> means the <a href="absolute-value.html">absolute value</a> of <b>a</b>, in other words any negative becomes a positive.</p>
<div class="example">
<p>Example:<img src="images/nth-root-4-m2-4.svg" alt="4th root example" style="vertical-align:middle; margin-left:20px;" height="34" width="184"></p>
</div>
<p>So that is something to be careful of! Read more at <a href="../algebra/exponents-squaring-negative.html">Exponents of Negative Numbers</a></p>
<p>Here it is in a little table:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>&nbsp;</th>
<th width="150">n is odd</th>
<th width="150">n is even</th>
</tr>
<tr style="text-align:center;">
<th>a ≥ 0</th>
<td style="width:150px;"><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
<td style="width:150px;"><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
</tr>
<tr style="text-align:center;">
<th>a &lt; 0</th>
<td style="width:150px;"><img src="images/nth-root-n-a-n.svg" alt="nth root a^n" height="34" width="90"></td>
<td width="150" bgcolor="#FFFFCC"><img src="images/nth-root-n-a-n-abs.svg" alt="nth root a^n = abs(a)" height="34" width="110"></td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<h3>nth Root of a-to-the-mth-Power</h3>
<p>What happens when the exponent and root are different values (<b>m</b> and <b>n</b>)?</p>
<p>Well, we are allowed to change the order like this:</p>
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a<sup>m</sup></span> =
<span style="font-size:130%;">(</span><span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span> <span style="font-size:130%;">)<sup>m</sup></span></p>
<p>So this: &nbsp;&nbsp; nth root of (a to the power m)<br>
becomes&nbsp; (nth root of a) to the power m</p>
<div class="example">
<h3>Example:</h3>
<p class="center larger"><span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">27<sup>2</sup></span> =
<span style="font-size:130%;">(</span><span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">27</span> <span style="font-size:130%;">)<sup>2</sup></span><br>
= 3<sup>2</sup><br>
= 9</p>
<p>Easier than squaring 27 then taking a cube root, right?</p>
</div>
<p><br></p>
<p>But there is an even <b>more powerful method</b> ... we can combine the exponent and root to make a new exponent, like this:</p>
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a<sup>m</sup></span> =
<span style=" transform: scale(1.3); display:inline-block;">a</span><sup><span class="intbl"><em>m</em><strong>n</strong></span></sup></p>
<p>The new exponent is the fraction <span class="intbl"><em>m</em><strong>n</strong></span> which may be easier to solve.</p>
<div class="example">
<h3>Example:</h3>
<p class="center larger"><span class="nthroot">3</span><span style="font-size:120%;"></span><span class="overline">4<sup>6</sup></span>
= <span style=" transform: scale(1.4); display:inline-block;">4</span><sup><span class="intbl"><em>6</em><strong>3</strong></span></sup><br>
= 4<sup>2</sup><br>
= 16</p>
</div>This works because the <b>nth root</b> is the same as an <b>exponent of (1/n)</b>
<p class="center larger"><span class="nthroot">n</span><span style="font-size:120%;"></span><span class="overline">a</span> =
<span style=" transform: scale(1.3); display:inline-block;">a</span><sup><span class="intbl"><em>1</em><strong>n</strong></span></sup></p>
<div class="example">
<h3>Example:</h3>
<p class="center larger"><span class="nthroot">2</span><span style="font-size:120%;"></span><span class="overline">9</span>
= <span style=" transform: scale(1.4); display:inline-block;">9</span><sup><span class="intbl"><em>1</em><strong>2</strong></span></sup>
= 3</p>
</div>
<p>You might like to read about <a href="../algebra/exponent-fractional.html">Fractional Exponents</a> to find out why!</p>
<p>&nbsp;</p>
<div class="questions">318, 2055, 319, 317, 1087, 2056, 1088, 2057, 3159, 3160</div>
<div class="related">
<a href="../square-root.html">Squares and Square Roots</a>
<a href="../surds.html">Surds</a>
<a href="../scientific-calculator.html">Scientific Calculator</a>
<a href="../algebra/index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/nth-root.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:18 GMT -->
</html>