lkarch.org/tools/mathisfun/www.mathsisfun.com/numbers/nature-golden-ratio-fibonacci.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

444 lines
17 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/nature-golden-ratio-fibonacci.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:58:59 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Nature, The Golden Ratio and Fibonacci Numbers</title>
<script language="JavaScript" type="text/javascript">
reSpell = [
["center", "centre"]
];
</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Nature, The Golden Ratio,<br>
and Fibonacci too ...</h1>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/sunflower.jpg" alt="sunflower" height="283" width="400"></p>
<p>Plants&nbsp;can grow new cells in spirals, such as the pattern of seeds in this beautiful sunflower.</p>
<p>The spiral happens naturally because each new cell is formed after a turn.</p>
<p class="center"><i>"New cell, then turn,<br>
then another cell, then turn, ..."</i></p>
<div style="clear:both"></div>
<h2>How Far to Turn?</h2>
<p>So, if you were a plant, how much of a turn would you have in between new cells?</p>
<table align="center" width="60%" border="0">
<tbody>
<tr>
<td style="text-align:center;">If you don't turn at all, you get a straight line.</td>
</tr>
<tr>
<td style="text-align:center;"><img src="images/seeds-straight-line.jpg" alt="seeds straight line" height="22" width="241"></td>
</tr>
<tr>
<td style="text-align:center;">But that is a very poor design ... you want something <b>round</b> that will hold together with <b>no gaps</b>.</td>
</tr>
</tbody></table>
<p><b>Why not try to find the best value for yourself?</b></p>
<p class="center larger">Try different values, like <b>0.75</b>, <b>0.9</b>, <b>3.1416</b>, <b>0.62</b>, etc.</p>
<p>Remember, you are trying to make a pattern with no gaps from start to end:</p>
<div class="script" style="height: 430px;">
images/golden-ratio-packing.js
</div>
<p>&nbsp;</p>
<p>(By the way, it doesn't matter about the whole number part, like <b>1.</b> or <b>5.</b> because they are full revolutions that point us back in the same direction.)</p>
<h2>What Did You Get?</h2>
<p>If you got something that ends like <b>0.618</b> (or 0.382, which is 1 0.618) then <i>"Congratulations, you are a successful member of the plant kingdom!"</i></p>
<table align="center" width="80%" border="0">
<tbody>
<tr>
<td><img src="images/phi-flower.jpg" alt="phi flower" height="163" width="161"></td>
<td>
<p>That is because the <a href="golden-ratio.html">Golden Ratio</a> (<b>1.61803</b>...) is the best solution, and the Sunflower has found this out in its own natural way.</p>
<p>Try it ... it should look like this.</p>
</td>
</tr>
</tbody></table>
<h2>Why?</h2>
<p>Any number that is a simple fraction (example: 0.75 is 3/4, and 0.95 is 19/20, etc) will, after a while, make a pattern of lines stacking up, which makes gaps.</p>
<p style="float:left; margin: 0 20px 5px 0;"><img src="images/phi.svg" alt="phi" height="95" width="84"></p>
<p>But the Golden Ratio (its symbol is the Greek letter Phi, shown at left) is an expert at <b>not being any fraction</b>.</p>
<p>It is an <a href="../irrational-numbers.html">Irrational Number</a> (meaning we cannot write it as a simple fraction), but more than that ... it is as far as we can get from being near any fraction.</p>
<div style="clear:both"></div>
<p>&nbsp;</p>
<div class="simple">
<table align="center" width="85%" border="0">
<tbody>
<tr>
<th colspan="2">Just being irrational is not enough</th>
</tr>
<tr>
<td><img src="images/pi1.svg" alt="pi symbol" height="100" width="100"></td>
<td>
<p>Pi (<b>3.141592654</b>...), which is also irrational.</p>
<p>Unfortunately it has a decimal very close to 1/7 (= 0.142857...), so it ends up with 7 arms.</p>
</td>
</tr>
<tr>
<td><img src="images/e1.svg" alt="e symbol" height="100" width="100"></td>
<td><b><i>e</i></b> (<b>2.71828...</b>) also irrational, does not work either because its decimal is close to 5/7 (0.714285...), so it also ends up with 7 arms.</td>
</tr>
</tbody></table></div>
<h2>So, How Does the Golden Ratio Work?</h2><br>
<table align="center" width="85%" border="0">
<tbody>
<tr>
<td colspan="2">One of the special properties of the Golden Ratio is that it can be defined in terms of itself, like this:</td>
</tr>
<tr>
<td style="text-align:right;"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
<td><img src="images/phi-1p1onphi.png" alt="phi = 1+1/phi" height="23" width="112"></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><i>(In numbers: 1.61803... = 1 + 1/1.61803...)</i></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td colspan="2">That can be expanded into this fraction that goes on for ever (called a <i>"continued fraction"</i>):</td>
</tr>
<tr>
<td style="text-align:right;"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
<td><img src="images/phi-continued-fraction.png" alt="phi = 1+1/(1+1/(1+1/(1+1/..." height="56" width="161"></td>
</tr>
</tbody></table><br>
<p class="center large">So, it neatly slips in between simple fractions.</p>
<h2>Fibonacci Numbers</h2>
<p>There is a special relationship between the Golden Ratio and <a href="fibonacci-sequence.html">Fibonacci Numbers</a> <i>(0, 1, 1, 2, 3, 5, 8, 13, 21, ... etc, each number is the sum of the two numbers before it)</i>.</p>
<p>When we take any two successive <i>(one after the other)</i> Fibonacci Numbers, their ratio is very close to the Golden Ratio:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th width="50">
<div align="right">A </div>
</th>
<th width="50">
<div align="right">B </div>
</th>
<th width="20">&nbsp;</th>
<th width="100">
<div align="left">B / A</div>
</th>
</tr>
<tr>
<td style="width:50px;">
<div align="right">2</div>
</td>
<td style="width:50px;">
<div align="right">3</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.5</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">3</div>
</td>
<td style="width:50px;">
<div align="right">5</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.666666666...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">5</div>
</td>
<td style="width:50px;">
<div align="right">8</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.6</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">8</div>
</td>
<td style="width:50px;">
<div align="right">13</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.625</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">13</div>
</td>
<td style="width:50px;">
<div align="right">21</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.615384615...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div>
</td>
<td height="14" width="50">
<div align="right">...</div>
</td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">144</div>
</td>
<td style="width:50px;">
<div align="right">233</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.618055556...</td>
</tr>
<tr>
<td style="width:50px;">
<div align="right">233</div>
</td>
<td style="width:50px;">
<div align="right">377</div>
</td>
<td style="width:20px;">&nbsp;</td>
<td style="width:100px;">1.618025751...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div>
</td>
<td height="14" width="50">
<div align="right">...</div>
</td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
</tbody></table><br>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/phi-flower2.jpg" alt="phi flower" height="163" width="161"></p>
<p>So, just like we naturally get seven arms when we use 0.142857 (1/7), we tend to get Fibonacci Numbers when we use the Golden Ratio.</p>
<p>Try counting the spiral arms - the "left turning" spirals, and then the "right turning" spirals ... what numbers did you get?</p>
<div style="clear:both"></div>
<h2>Spiral Leaf Growth</h2>
<p style="float:left; margin: 0 20px 5px 0;"><img src="images/succulent-top.jpg" alt="succulent top view" height="187" width="250"></p>
<p>This interesting behavior is not just found in sunflower seeds.</p>
<p>Leaves, branches and petals can grow in spirals, too.</p>
<p>Why? So that new leaves don't block the sun from older leaves, or so that the maximum amount of rain or dew gets directed down to the roots.</p>
<p>&nbsp;</p>
<p>In fact, when a plant has spirals the rotation tends to be a fraction made with two successive (one after the other) Fibonacci Numbers, for example:</p>
<ul>
<li>A half rotation is 1/2 (1 and 2 are Fibonacci Numbers)</li>
<li>3/5 is also common (both Fibonacci Numbers), and</li>
<li>5/8 also (you guessed it!)</li>
</ul>
<p>all getting closer and closer to the Golden Ratio.</p>
<table style="border: 0;">
<tbody>
<tr>
<td style="text-align:right;">
<p>And that is why Fibonacci Numbers are very common in plants.<br>
1, 2, 3, 5, 8, 13, 21, ... etc occur in an amazing number of places.</p>
<p>Here is a daisy with 21 petals<br>
(but expect a few more or less, because<br>
some may have dropped off or be just growing)</p>
</td>
<td><img src="images/daisy-21-petals.jpg" alt="daisy 21 petals" height="120" width="120"></td>
</tr>
</tbody></table>
<p><b>But we don't see this in all plants</b>, as nature has many different methods of survival.</p>
<p><br></p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/golden-angle.svg" alt="golden angle" height="188" width="180"></p>
<h2>Golden Angle</h2>
<p>So far we have been talking about "turns" (full rotations).</p>
<p>The equivalent of 0.61803... rotations is 222.4922... degrees, or about 222.5°.</p>
<p>In the other direction it is about <b>137.5°</b>, called the "Golden Angle".</p>
<p>&nbsp;</p>
<p class="center"><i class="larger">So, next time you are walking in the garden, look for the Golden Angle, and count petals and leaves to find Fibonacci Numbers,<br>
and discover how clever the plants are ... !</i></p>
<h2>Exercise</h2>
<p>Why don't you go into the garden or park right now, and start counting leaves and petals, and measuring rotations to see what you find.</p>
<p>You can write your results on this form:</p>
<div class="simple">
<table align="center" border="0">
<tbody>
<tr>
<td colspan="3"><b>Plant Name or Description:</b></td>
</tr>
<tr>
<td>&nbsp;</td>
<td rowspan="1" colspan="2">&nbsp;&nbsp;</td>
</tr>
<tr>
<td colspan="3" rowspan="1"><b>Do the Leaves Grow in Spirals?</b> Y / N&nbsp;</td>
</tr>
<tr>
<td colspan="2">Count a group of Leaves:</td>
<td width="70">&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;">How many leaves (a) ?</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;">How many full rotations (b) ?</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;">Rotation per leaf (b/a) :</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:right;">Rotation Angle (360 × b/a) :</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td colspan="3" rowspan="1"><b>Are There Flowers?</b> Y / N&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td style="text-align:right;">How many petals on Flower 1:</td>
<td>&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td style="text-align:right;">Flower 2:</td>
<td>&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td style="text-align:right;">Flower 3:</td>
<td>&nbsp;</td>
</tr>
</tbody></table>
</div>
<p class="center">(But remember: nature has its own rules, and it does not have to follow mathematical patterns. But when it does it is awesome to see.)</p>
<p class="center"><br></p>
<div class="formal center80">
<h3>* Notes About the Animation</h3>
<p>Sunflower seeds grow from the center outwards, but on
the animation I found it easier to draw the younger seeds first and add
on the older ones.</p>
<p>The animation should continue longer to be the same
as the sunflower - this would result in 55 clockwise spirals and 34
counterclockwise spirals (successive Fibonacci Numbers). I just didn't
want it to take too long.</p>
<p>The spirals are not programmed into it - they occur
naturally as a result of trying to place the seeds as close to each
other as possible while keeping them at the correct rotation.</p></div>
<p>&nbsp;</p>
<div class="related">
<a href="golden-ratio.html">Golden Ratio</a>
<a href="fibonacci-sequence.html">Fibonacci Sequence</a>
<a href="../irrational-numbers.html">Irrational Numbers</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/nature-golden-ratio-fibonacci.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:01 GMT -->
</html>