new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
400 lines
18 KiB
HTML
400 lines
18 KiB
HTML
<!doctype html>
|
|
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/geometry/regular-polygons.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:52 GMT -->
|
|
<head>
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Regular Polygons - Properties</title>
|
|
<script src="images/exterior-angles.js" type="text/javascript"></script>
|
|
<link rel="stylesheet" type="text/css" href="../stylejs.css" />
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
|
|
<link rel="stylesheet" type="text/css" href="../style3.css" />
|
|
<script src="../main3.js" type="text/javascript"></script>
|
|
</head>
|
|
|
|
<body id="bodybg">
|
|
<div class="bg">
|
|
<div id="stt"></div>
|
|
<div id="hdr"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
|
|
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
|
|
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
|
|
<div id="adTopOuter" class="centerfull noprint">
|
|
<div id="adTop">
|
|
<script type="text/javascript">document.write(getAdTop());</script>
|
|
</div>
|
|
</div>
|
|
<div id="adHide">
|
|
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
|
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
|
<a href="../about-ads.html">About Ads</a></div>
|
|
</div>
|
|
<div id="menuWide" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(0));</script>
|
|
</div>
|
|
<div id="linkto">
|
|
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
|
|
</div>
|
|
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
|
|
<div id="menuSlim" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(1));</script>
|
|
</div>
|
|
<div id="menuTiny" class="menu">
|
|
<script type="text/javascript">document.write(getMenu(2));</script>
|
|
</div>
|
|
<div id="extra"></div>
|
|
</div>
|
|
<div id="content" role="main"><!-- #BeginEditable "Body" -->
|
|
<h1 align="center">Properties of Regular Polygons</h1>
|
|
<h2>Polygon</h2>
|
|
<p>A <a href="polygons.html">polygon</a> is a <a href="plane.html">plane</a> shape (two-dimensional) with straight sides. Examples include triangles, quadrilaterals, pentagons, hexagons and so on.</p>
|
|
<h2>Regular</h2>
|
|
<table width="100%" border="0">
|
|
<tr>
|
|
<td>
|
|
<p>A "Regular Polygon" has:</p>
|
|
<ul>
|
|
<div class="bigul">
|
|
<li>all <b>sides</b> equal and </li>
|
|
<li>all <b>angles</b> equal. </li>
|
|
</div>
|
|
</ul>
|
|
<p>Otherwise it is<b> irregular</b>.</p>
|
|
</td>
|
|
<td>
|
|
<table border="0" align="center">
|
|
<tr align="center">
|
|
<td><b><img src="images/pentagon-regular.svg" alt="pentagon regular" /></b></td>
|
|
<td width="40"> </td>
|
|
<td><b><img src="images/pentagon-irregular.svg" alt="irregular pentagon" /></b></td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td>Regular Pentagon</td>
|
|
<td> </td>
|
|
<td>Irregular Pentagon</td>
|
|
</tr>
|
|
</table>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<p>Here we look at <b>Regular Polygons</b> only.</p>
|
|
<h2>Properties</h2>
|
|
<p>So what can we know about regular polygons? First of all, we can work out angles.</p>
|
|
<table width="100%" border="0">
|
|
<tr>
|
|
<td><img src="images/exterior-angle.svg" alt="exterior angle" /></td>
|
|
<td>
|
|
<h2>Exterior Angle</h2>
|
|
<p>The <a href="exterior-angles-polygons.html">Exterior Angle</a> is the angle between any side of a shape,
|
|
<br /> and a line extended from the next side.</p>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<div style="float:left; margin: 0 10px 5px 0;">
|
|
<script type="text/javascript">
|
|
exterioranglesMain();
|
|
</script>
|
|
</div>
|
|
<p>All the Exterior Angles of a polygon add up to 360°, so:</p>
|
|
<p class="center larger">Each exterior angle must be <b>360°/n </b></p>
|
|
<p>(where <b>n</b> is the number of sides)</p>
|
|
<p> </p>
|
|
<p>Press play button to see.</p>
|
|
<div style="clear:both"></div>
|
|
<div class="example">
|
|
<p style="float:right; margin: 10px 0 5px 10px;" class="center"><img src="images/external-angle.svg" alt="external angle of regular octagon" />
|
|
<br> <i>Exterior Angle<br>(of a regular octagon)</i></p>
|
|
<h3>Example: What is the exterior angle of a regular octagon?</h3>
|
|
<p> </p>
|
|
<p>An octagon has 8 sides, so:</p>
|
|
<div class="tbl">
|
|
<div class="row"><span class="left">Exterior angle =</span><span class="right">360° / n</span></div>
|
|
<div class="row"><span class="left"> =</span><span class="right">360° / 8</span></div>
|
|
<div class="row"><span class="left">=</span><span class="right">45°</span></div>
|
|
</div>
|
|
</div>
|
|
<div style="clear:both"></div>
|
|
<table width="100%" border="0">
|
|
<tr>
|
|
<td><img src="images/exterior-interior-angle.gif" width="200" height="103" alt="exterior interior angle" /></td>
|
|
<td>
|
|
<h2>Interior Angles </h2>
|
|
<p>The <a href="interior-angles-polygons.html">Interior Angle</a> and Exterior Angle are measured from the same line, so they <b>add up to 180°</b>.</p>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<p class="center larger">Interior Angle = 180° − Exterior Angle</p>
|
|
<p>We know the<b> Exterior angle = 360°/n</b>, so:</p>
|
|
<p class="center larger">Interior Angle = 180° − 360°/n </p>
|
|
<div class="center80">
|
|
<p>Which can be rearranged like this:</p><div class="tbl">
|
|
<div class="row"><span class="left"> Interior Angle</span><span class="right">= 180° − 360°/n</span></div>
|
|
<div class="row"><span class="left"> </span><span class="right">= (n × 180° / n) − (2 × 180° / n)</span></div>
|
|
<div class="row"><span class="left"> </span><span class="right"> = (n−2) × 180°/n</span></div>
|
|
</div>
|
|
<p>So we also have this:</p>
|
|
<p class="center larger">Interior Angle = (n−2) × 180° / n</p>
|
|
</div>
|
|
<p> </p>
|
|
<div class="example">
|
|
<h3>Example: What is the interior angle of a regular octagon?</h3>
|
|
<p>A regular octagon has 8 sides, so:</p>
|
|
<p class="center">Exterior Angle = 360<b>° </b>/ 8 = 45°</p>
|
|
<p class="center"> Interior Angle = 180° − 45° = <b>135°</b> </p>
|
|
<p class="center"><img src="images/internal-angle.svg" alt="internal angle of regular octagon" /><i><br>
|
|
Interior Angle<br>
|
|
(of a regular octagon)</i></p>
|
|
<p>Or we could use: </p>
|
|
<div class="tbl">
|
|
<div class="row"><span class="left"> Interior Angle</span><span class="right">= (n−2) × 180° / n</span></div>
|
|
<div class="row"><span class="left"> </span><span class="right"> = (8−2) × 180° / 8</span></div>
|
|
<div class="row"><span class="left"> </span><span class="right"> = 6 × 180° / 8</span></div>
|
|
<div class="row"><span class="left"> </span><span class="right"> = 135°</span></div>
|
|
</div>
|
|
|
|
</div>
|
|
<div class="example">
|
|
<h3>Example: What are the interior and exterior angles of a regular hexagon? </h3>
|
|
<p style="float:left; margin: 10px;"><img src="images/regular-hexagon.svg" alt="regular hexagon" /></p>
|
|
<p>A regular hexagon has 6 sides, so:</p>
|
|
<p class="center">Exterior Angle = 360<b>° </b>/ 6 = 60°</p>
|
|
<p class="center"> Interior Angle = 180<b>° − </b> 60° = <b>120°</b></p>
|
|
</div>
|
|
<br />
|
|
<p>And now for some names:</p>
|
|
<h2>"Circumcircle, Incircle, Radius and Apothem ..." </h2>
|
|
<p>Sounds quite musical if you repeat it a few times, but they are just the names of the "outer" and "inner" circles (and each radius) that can be drawn on a polygon like this:</p>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/apothem.svg" alt="apothem incircle, radius, circumcircle" /></p>
|
|
<p> </p>
|
|
<p>The "outside" circle is called a <b>circumcircle</b>, and it connects all vertices (corner points) of the polygon.</p>
|
|
<p>The radius of the circumcircle is also the <b>radius</b> of the polygon.</p>
|
|
<p> </p>
|
|
<p>The "inside" circle is called an <b>incircle</b> and it just touches each side of the polygon at its midpoint.</p>
|
|
<p>The radius of the incircle is the <b>apothem</b> of the polygon.</p>
|
|
<p> </p>
|
|
<p>(Not all polygons have those properties, but triangles and regular polygons do).</p>
|
|
<h2>Breaking into Triangles</h2>
|
|
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/hexagon-triangles.svg" alt="hexagon triangles side and apothem" /></p>
|
|
<p>We can learn a lot about regular polygons by breaking them into triangles like this:</p>
|
|
<p>Notice that:</p>
|
|
<ul>
|
|
<li>the "base" of the triangle is one side of the polygon.</li>
|
|
<li>the "height" of the triangle is the "Apothem" of the polygon</li>
|
|
</ul>
|
|
<p>Now, the <a href="../area.html">area of a triangle</a> is half of the base times height, so:</p>
|
|
<p class="center">Area of one triangle = base × height / 2 = side × apothem / 2</p>
|
|
<p>To get the area of the whole polygon, just add up the areas of all the little triangles ("n" of them): </p>
|
|
<p class="center">Area of Polygon = <b>n</b> × side × apothem / 2</p>
|
|
<p>And since the perimeter is all the sides = n × side, we get: </p>
|
|
<p class="center larger">Area of Polygon = perimeter × apothem / 2</p>
|
|
<h2>A Smaller Triangle</h2>
|
|
<p>By cutting the triangle in half we get this:</p>
|
|
<p class="center"><img src="images/regular-polygon-sector.svg" alt="regular polygon sector" /><i><br>
|
|
<br>
|
|
(Note: The angles are in <a href="radians.html">radians</a>, not <a href="degrees.html">degrees</a>)</i></p>
|
|
<p> </p>
|
|
<p>The small triangle is right-angled and so we can use <a href="../sine-cosine-tangent.html">sine, cosine and tangent</a> to find how the <b>side</b>, <b>radius</b>, <b>apothem</b> and <b>n</b> (number of sides) are related:</p>
|
|
<div class="simple">
|
|
<table width="580" border="0" align="center" cellpadding="5">
|
|
<tr>
|
|
<td>sin(<font size="+1" face="Times New Roman, Times, serif">π</font>/n) = (Side/2) / Radius</td>
|
|
<td><img src="../images/style/right-arrow.gif" width="46" height="46" alt="right arrow" /></td>
|
|
<td><b>Side = 2 × Radius × sin(<font size="+1" face="Times New Roman, Times, serif">π</font>/n) </b></td>
|
|
</tr>
|
|
<tr>
|
|
<td>cos(<font size="+1" face="Times New Roman, Times, serif">π</font>/n) = Apothem / Radius</td>
|
|
<td><img src="../images/style/right-arrow.gif" width="46" height="46" alt="right arrow" /></td>
|
|
<td><b>Apothem = Radius × cos(<font size="+1" face="Times New Roman, Times, serif">π</font>/n) </b></td>
|
|
</tr>
|
|
<tr>
|
|
<td>tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n) = (Side/2) / Apothem</td>
|
|
<td><img src="../images/style/right-arrow.gif" width="46" height="46" alt="right arrow" /></td>
|
|
<td><b>Side = 2 × Apothem × tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n) </b></td>
|
|
</tr>
|
|
</table>
|
|
</div>
|
|
<p>There are a lot more relationships like those (most of them just "re-arrangements"), but those will do for now.</p>
|
|
<h2>More Area Formulas</h2>
|
|
<p>We can use that to calculate the area when we only know the Apothem: </p>
|
|
<div class="center80">
|
|
|
|
<div class="tbl">
|
|
<div class="row"><span class="left"><b>Area of Small Triangle</b></span><span class="right">= ½ × Apothem × (Side/2)</span></div>
|
|
</div>
|
|
|
|
<p>And we know (from the "tan" formula above) that:</p>
|
|
<p class="center"> <b>Side = 2 × Apothem × tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n)</b></p>
|
|
<p>So:</p>
|
|
<div class="tbl">
|
|
<div class="row"><span class="left"><b>Area of Small Triangle</b></span><span class="right">= ½ × Apothem × (Apothem × tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n))</span></div>
|
|
<div class="row"><span class="left"> </span><span class="right"><b>= ½ × Apothem<sup>2</sup> × tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n)</b></span></div>
|
|
</div>
|
|
</div>
|
|
<p>And there are 2 such triangles per side, or <b>2n</b> for the <b>whole polygon</b>:</p>
|
|
<p class="center larger">Area of Polygon = n × Apothem<sup>2</sup> × tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n)</p>
|
|
<p>When we don't know the Apothem, we can use the same formula but re-worked for Radius or for Side:</p>
|
|
<p class="center larger">Area of Polygon = ½ × n × Radius<sup>2</sup> × sin(2 × <font size="+1" face="Times New Roman, Times, serif">π</font>/n)</p>
|
|
<p class="center larger">Area of Polygon = ¼ × n × Side<sup>2</sup> / tan(<font size="+1" face="Times New Roman, Times, serif">π</font>/n)</p>
|
|
<h2>A Table of Values</h2>
|
|
<p>And here is a table of Side, Apothem and Area compared to a Radius of "1", using the formulas we have worked out:</p>
|
|
<div class="simple">
|
|
<table border="0" align="center">
|
|
<tr align="center">
|
|
<th>Type</th>
|
|
<th>Name when
|
|
<br /> Regular</th>
|
|
<th>Sides
|
|
<br /> (n) </th>
|
|
<th>Shape</th>
|
|
<th>Interior Angle</th>
|
|
<th>Radius</th>
|
|
<th>Side</th>
|
|
<th>Apothem</th>
|
|
<th>Area</th>
|
|
</tr>
|
|
<tr align="center">
|
|
<td><a href="../triangle.html">Triangle</a>
|
|
<br /> <i>(or Trigon)</i></td>
|
|
<th>Equilateral
|
|
<br /> Triangle</th>
|
|
<td><b>3</b></td>
|
|
<td><img src="images/triangle-regular.svg" height="50" alt="regular triangle" /></td>
|
|
<td>60°</td>
|
|
<td>1</td>
|
|
<td>1.732
|
|
<br /> (√3)</td>
|
|
<td>0.5</td>
|
|
<td>1.299
|
|
<br /> (¾√3) </td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td><a href="../quadrilaterals.html">Quadrilateral</a><i><br />
|
|
(or Tetragon)</i></td>
|
|
<th><a href="square.html">Square</a></th>
|
|
<td><b>4</b></td>
|
|
<td><img src="images/quadrilateral-regular.svg" height="50" alt="regular quadrilateral" /></td>
|
|
<td>90°</td>
|
|
<td>1</td>
|
|
<td>1.414
|
|
<br /> (√2) </td>
|
|
<td>0.707
|
|
<br /> (1/√2) </td>
|
|
<td>2</td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td><a href="pentagon.html">Pentagon</a></td>
|
|
<th>Regular
|
|
<br /> Pentagon</th>
|
|
<td><b>5</b></td>
|
|
<td><b><img src="images/pentagon-regular.svg" height="50" alt="pentagon regular" /></b></td>
|
|
<td>108°</td>
|
|
<td>1</td>
|
|
<td>1.176</td>
|
|
<td>0.809</td>
|
|
<td>2.378</td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td><a href="hexagon.html">Hexagon</a></td>
|
|
<th>Regular
|
|
<br /> Hexagon</th>
|
|
<td><b>6</b></td>
|
|
<td><b><img src="images/hexagon-regular.svg" alt="hexagon regular" height="50" /></b></td>
|
|
<td>120°</td>
|
|
<td>1</td>
|
|
<td>1</td>
|
|
<td>0.866
|
|
<br /> (½√3) </td>
|
|
<td>2.598
|
|
<br /> ((3/2)√3)</td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td>Heptagon
|
|
<br /> <i>(or Septagon)</i></td>
|
|
<th>Regular
|
|
<br /> Heptagon</th>
|
|
<td><b>7</b></td>
|
|
<td><b><img src="images/heptagon-regular.svg" alt="heptagon refular" height="50" /></b></td>
|
|
<td>128.571°</td>
|
|
<td>1</td>
|
|
<td>0.868</td>
|
|
<td>0.901</td>
|
|
<td>2.736</td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td><a href="octagon.html">Octagon</a></td>
|
|
<th>Regular
|
|
<br /> Octagon</th>
|
|
<td><b>8</b></td>
|
|
<td><b><img src="images/octagon-regular.svg" alt="octagon regular" height="50" /></b></td>
|
|
<td>135°</td>
|
|
<td>1</td>
|
|
<td>0.765</td>
|
|
<td>0.924</td>
|
|
<td>2.828
|
|
<br /> (2√2)</td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td>...</td>
|
|
<th>...</th>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
<td> </td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td>Pentacontagon</td>
|
|
<th>Regular
|
|
<br /> Pentacontagon</th>
|
|
<td><b>50</b></td>
|
|
<td> </td>
|
|
<td>172.8°</td>
|
|
<td>1</td>
|
|
<td>0.126
|
|
<br /> </td>
|
|
<td>0.998
|
|
<br /> </td>
|
|
<td>3.133</td>
|
|
</tr>
|
|
<tr align="center">
|
|
<td colspan="9">(Note: values correct to 3 decimal places only)</td>
|
|
</tr>
|
|
</table>
|
|
</div>
|
|
|
|
<p> </p>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/regular-polygon-graph.svg" alt="regular polygon graph" /></p>
|
|
<h2>Graph</h2>
|
|
<p>And here is a graph of the table above, but with number of sides ("n") from 3 to 30.</p>
|
|
<p>Notice that as "n" gets bigger, the Apothem is tending towards 1 (equal to the Radius) and that the Area is tending towards <b><font size="+1" face="Times New Roman, Times, serif">π</font></b> = 3.14159..., just like a circle.</p>
|
|
<p>What is the Side length tending towards?</p>
|
|
<p> </p>
|
|
<div class="questions">
|
|
<script type="text/javascript">
|
|
getQ(6039, 6042, 1794, 1792, 1793, 1795, 1796, 1797, 1798, 1799);
|
|
</script> </div>
|
|
<div class="related"> <a href="polygons.html">Polygons</a> <a href="polygons-diagonals.html">Diagonals of Polygons</a> <a href="../sine-cosine-tangent.html">Sine, cosine and tangent</a> <a href="index.html">Geometry Index</a> </div>
|
|
<!-- #EndEditable --></div>
|
|
<div id="adend" class="centerfull noprint">
|
|
<script type="text/javascript">document.write(getAdEnd());</script>
|
|
</div>
|
|
<div id="footer" class="centerfull noprint">
|
|
<script type="text/javascript">document.write(getFooter());</script>
|
|
</div>
|
|
<div id="copyrt">
|
|
Copyright © 2017 MathsIsFun.com
|
|
</div>
|
|
|
|
<script type="text/javascript">document.write(getBodyEnd());</script>
|
|
</body>
|
|
<!-- #EndTemplate -->
|
|
<!-- Mirrored from www.mathsisfun.com/geometry/regular-polygons.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:54 GMT -->
|
|
</html>
|