Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

211 lines
9.7 KiB
HTML

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/second-derivative.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:32:19 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Second Derivative</title>
<script language="JavaScript" type="text/javascript">reSpell=[["meters","metres"]];</script>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<script src="images/function-graph-2deriv.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="../stylejs.css">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Second Derivative</h1>
<p class="center">
<img src="images/slope-example-2.svg" alt="slope examples"><br>A derivative basically gives you the slope of a function at any point.<br><i>The derivative of <b>2x</b> is <b>2</b></i></p>
<p>Read more about <a href="derivatives-introduction.html">derivatives</a> if you don't already know what they are!</p>
<p>The "Second Derivative" is <b>the derivative of</b> the derivative of a function. So:</p>
<ul>
<li>Find the derivative of a function</li>
<li>Then find the derivative of <b>that</b></li>
</ul>
<p>A derivative is often shown with a little tick mark: <b>f'(x)</b></p>
<p><b></b>The second derivative is shown with <b>two</b> tick marks like this: <b>f''(x)</b></p>
<div class="example">
<h3>Example: f(x) = x<sup>3</sup></h3>
<ul>
<li>Its derivative is <b>f'(x) = 3x<sup>2</sup></b></li>
<li>The derivative of 3x<sup>2</sup> is 6x<b></b></li></ul>
<p>So the second derivative of f(x) is <b>6x</b>:</p>
<ul>
</ul>
<p class="center larger">f''(x) = 6x</p>
</div>
<p>&nbsp;</p>
<p class="center">A derivative can also be shown as <b><span class="intbl"><em>dy</em><strong>dx</strong></span></b><br>and the second derivative shown as <b><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span></b></p>
<div class="example">
<h3>Example: (continued)</h3>
<p>The previous example could be written like this:</p>
<p class="center">&nbsp; <b>y = x<sup>3</sup></b></p>
<p class="center"><b><span class="intbl"><em>dy</em><strong>dx</strong></span>&nbsp; = 3x<sup>2</sup></b></p>
<p class="center"><b><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span>&nbsp; = 6x</b> &nbsp;</p>
</div>
<h2>Distance, Speed and Acceleration</h2>
<p>A common real world example of this is distance, speed and acceleration:</p>
<div class="example">
<h3>Example: A bike race!</h3>
<p>You are cruising along in a bike race, going a steady <b>10 m every second</b>.</p>
<p class="center"><img src="images/speed.svg" alt="speed 10m in 1s"></p>
<p><b>Distance</b>: is how far you have moved along your path. It is common to use <b>s</b> for distance (from the Latin "spatium").</p>
<ul>
</ul>
<p>&nbsp;</p>
<p><b>Speed:</b> is how much your distance <b>s</b> changes over time <b>t</b> ...</p>
<p>... and is the <b>first derivative</b> of distance with respect to time: <span class="large"><span class="intbl"><em>ds</em><strong>dt</strong></span></span></p>
<p>And we know you are doing 10 m per second, so: <span class="large"><span class="intbl"><em>ds</em><strong>dt</strong></span> = 10 m/s</span></p>
<p>&nbsp;</p>
<p><b>Acceleration</b>: Now you start cycling faster! You increase your speed to <b>14 m every second</b> over the next 2 seconds.</p>
<p class="center"><img src="images/acceleration.svg" alt="acceleration from 10m per 1s to 14m per 1s"></p>
<p>When you are accelerating your <b>speed is changing</b> over time.</p>
<p>So <span class="large"><span class="intbl"><em>ds</em><strong>dt</strong> </span></span> is changing over time!</p>
<table style="border: 0;">
<tbody>
<tr>
<td rowspan="2">We could write it like this: &nbsp;</td>
<td>
<table style="border: 0;">
<tbody>
<tr>
<td><b>d</b></td>
<td><span class="large"><span class="intbl"> <em>ds</em> <strong>dt</strong> </span></span></td>
</tr>
</tbody></table></td>
</tr>
<tr>
<td style="border-top: 1px solid;" align="center"><b>dt</b></td>
</tr>
</tbody></table>
<p>But it is usually written&nbsp; <span class="large"><span class="intbl"> <em>d<sup>2</sup>s</em> <strong>dt<sup>2</sup></strong> </span></span></p>
<p>Your speed <b>increases by 4 m/s</b> over <b>2 seconds</b>, so:</p>
<p class="center">&nbsp; <span class="large"><span class="intbl"> <em>d<sup>2</sup>s</em> <strong>dt<sup>2</sup></strong> </span> = <span class="intbl"><em>4</em><strong>2</strong></span>&nbsp;= 2 m/s<sup>2</sup></span></p>
<p>&nbsp;Your speed changes by <b>2 meters per second</b> <i>per second</i>.</p>
<p class="center">
And yes, "per second" is used twice!</p>
<p>It can be thought of as (m/s)/s but is usually written m/s<sup>2</sup></p>
<p>&nbsp;</p>
<p><i>(Note: in the real world your speed and acceleration changes moment to moment, but here we assume you are super steady!)</i></p>
</div>
<p>Here it is in one table:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>&nbsp;</td>
<td style="text-align:center; width:100px;">&nbsp;</td>
<td style="text-align:center; width:120px;"><i>Example<br>
Measurement</i></td>
</tr>
<tr>
<td style="text-align:right;"><b>Distance</b>:</td>
<td class="large" align="center">s</td>
<td style="text-align:center;"><i>100 m</i></td>
</tr>
<tr>
<td style="text-align:right;">First Derivative is <b>Speed</b>:</td>
<td style="text-align:center;"><span class="large"><span class="intbl"> <em>ds</em> <strong>dt</strong> </span></span></td>
<td style="text-align:center;"><i>10 m/s</i></td>
</tr>
<tr>
<td style="text-align:right;">Second Derivative is <b>Acceleration</b>:</td>
<td style="text-align:center;"><span class="large"><span class="intbl"> <em>d<sup>2</sup>s</em> <strong>dt<sup>2</sup></strong> </span></span></td>
<td style="text-align:center;"><i>2 m/s<sup>2</sup></i></td>
</tr>
</tbody></table>
</div><br>
<div class="fun">
<p>But wait, there is more!</p>
<p>The <b>third</b> derivative of position with respect to time (how acceleration changes over time) is called "Jerk" or "Jolt" !</p>
<p>We can actually feel Jerk when we start to accelerate, apply brakes or go around corners as our body adjusts to the new forces.</p>
<p>Engineers try to reduce Jerk when designing elevators, train tracks, etc.</p>
<p>Also:</p>
<ul>
<li>The <b>fourth</b> derivative of position with respect to time is called "Snap" or "Jounce"</li>
<li>The <b>fifth</b> is "Crackle"</li>
<li>The <b>sixth</b> is "Pop"</li>
</ul>
<p>Yes, really!</p>
<p class="center larger">They go: distance, speed, acceleration, jerk, snap, crackle and pop</p>
</div>
<h2>Play With It</h2>
<p>Here you can see the derivative f'(x) and the second derivative f''(x) of some common functions.</p>
<!--<div class="flash">
<script>putFlash6(620,840,'images/derivative-second.swf','','#FFFFFF');</script>
<noscript>
<object type="application/x-shockwave-flash" width="620" height="840" data="images/derivative-second.swf" align="middle">
<param name="allowScriptAccess" value="sameDomain" /><param name="allowFullScreen" value="true" /><param name="movie" value="images/derivative-second.swf" /><param name="quality" value="high" /><param name="bgcolor" value="#FFFFFF" /></object>
</noscript>
</div>-->
<p>Notice how the <b>slope</b> of each function is the <b>y-value</b> of the derivative plotted below it.</p>
<p>For example, move to where the sin(x) function slope flattens out (slope=0), then see that the derivative graph is at zero. A similar thing happens between f'(x) and f''(x).
Try this at different points and other functions.</p>
<script>functiongraph2derivMain();</script>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(6813, 6814, 6815, 6816, 6817, 6818, 6819, 6820, 6821, 6822, 6823, 15317, 15318, 15319, 15320, 15321, 15322, 15323, 15324, 15325);</script>&nbsp; </div>
<div class="related">
<a href="derivatives-introduction.html">Derivatives</a>
<a href="second-derivative-animation.html">Second Derivatives Animation</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/second-derivative.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:32:20 GMT -->
</html>