Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

217 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/maxima-minima.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:05 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Finding Maxima and Minima using Derivatives</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<script language="JavaScript" type="text/javascript">reSpell = [["traveling", "travelling"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Finding Maxima and Minima using Derivatives</h1>
<p class="center">Where is a function at a high or low point? Calculus can help!</p>
<p>A maximum is a high point and a minimum is a low point:</p>
<p class="center"><img src="images/function-min-max.svg" alt="function local minimum and maximum"></p>
<p>In a smoothly changing function a maximum or minimum is always where the function <b>flattens out</b>&nbsp; (except for a <b>saddle point</b>).</p>
<p><b><i>Where does it flatten out?</i></b>&nbsp; <span class="large">Where the <b>slope is zero</b>.</span></p>
<p><b><i>Where is the slope zero?</i></b>&nbsp; <span class="large">The <b>Derivative</b> tells us! </span></p>
<p>Let's dive right in with an example:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/quadratic-1b.svg" alt="quadratic graph"></p>
<h3>Example:&nbsp;A&nbsp;ball&nbsp;is thrown in the air. Its height at any time t is given by:</h3>
<p class="center larger">h = 3 + 14t 5t<sup>2</sup></p>
<h3>What is its maximum height?</h3>
<p>&nbsp;</p>
<p>Using <a href="derivatives-introduction.html">derivatives</a> we can find the slope of that function:</p>
<p class="center larger"><span class="intbl"><em>d</em><strong>dt</strong></span>h = 0 + 14 5(2t)<br>
= 14 10t</p>
<p>(See below this example for how we found that derivative.)</p>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/quadratic-1b-slope.svg" alt="quadratic graph"></p>
<p>Now&nbsp;find&nbsp;when&nbsp;the&nbsp;<b>slope is zero</b>:</p>
<div class="so">14 10t = 0</div>
<div class="so">10t = 14</div>
<div class="so"> t = 14 / 10 = <b>1.4</b></div>
<p>The slope is zero at <b>t = 1.4 seconds</b></p>
<p>And the height at that time is:</p>
<div class="so">h = 3 + 14×1.4 5×1.4<sup>2</sup></div>
<div class="so">h = 3 + 19.6 9.8 = <b>12.8</b></div>
<p>And so:</p>
<p class="center larger">The maximum height is <b>12.8 m</b> (at t = 1.4 s)</p>
</div>
<p>&nbsp;</p>
<div class="center80">
<h3>A Quick Refresher on Derivatives</h3>
<p>A <a href="derivatives-introduction.html">derivative</a> basically finds the slope of a function.</p>
<p>In the previous example we took this:</p>
<p class="center larger">h = 3 + 14t 5t<sup>2</sup></p>
<p>and came up with this derivative:</p>
<p class="center larger"><span class="intbl"><em>d</em><strong>dt</strong></span>h = 0 + 14 5(2t)<br>
= 14 10t</p>
<p class="center">Which tells us the <b>slope</b> of the function at any time <b>t</b></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-examples.svg" alt="slope examples: y=3, slope=0; y=2x, slope=2"></p>
<p>&nbsp;</p>
<p>We used these <a href="derivatives-rules.html">Derivative Rules</a>:</p>
<ul>
<li>The slope of a <b>constant</b> value (like 3) is 0</li>
<li>The slope of a <b>line</b> like 2x is 2, so 14t has a slope of 14</li>
<li>A <b>square</b> function like t<sup>2</sup> has a slope of 2t, so 5t<sup>2</sup> has a slope of 5(2t)</li>
<li>And then we added them up: <span class="center larger">0 + 14 5(2t)</span></li>
</ul>
<div style="clear:both"></div>
</div>
<p>&nbsp;</p>
<h2>How Do We Know it is a Maximum (or Minimum)?</h2>
<p>We saw it on the graph! But otherwise ... derivatives come to the rescue again.</p>
<p>Take the <b>derivative of the slope</b> (the <a href="second-derivative.html">second derivative</a> of the original function):</p>
<p class="center larger">The Derivative of 14 10t is <b>10</b></p>
<p>This means the slope is continually getting smaller (10): traveling from left to right the slope starts out positive (the function rises), goes through zero (the flat point), and then the slope becomes negative (the function falls):</p>
<p class="center"><img src="images/function-max.svg" alt="slope positive then zero then negative"><br>
A slope that gets smaller (and goes though 0) means a maximum.</p>
<div class="words">
<p>This is called the <b>Second Derivative Test</b></p>
</div>
<p>On the graph above I showed the slope before and after, but in practice we do the test <b>at the point where the slope is zero</b>:</p>
<div class="center80">
<h3>Second Derivative Test</h3>
<p>When a function's <b>slope is zero at x</b>, and the <b>second derivative at x</b> is:</p>
<ul>
<li>less than 0, it is a local maximum</li>
<li>greater than 0, it is a local minimum</li>
<li>equal to 0, then the test fails (there may be other ways of finding out though)</li>
</ul>
</div>
<p class="center larger">&nbsp;</p>
<p class="center larger">"Second Derivative: less than 0 is a maximum, greater than 0 is a minimum"</p>
<p>&nbsp;</p>
<div class="example">
<h3>Example: Find the maxima and minima for:</h3>
<p class="center larger">y = 5x<sup>3</sup> + 2x<sup>2</sup> 3x</p>
<p>The derivative (slope) is:</p>
<p class="center larger"><span class="intbl"><em>d</em><strong>dx</strong></span>y = 15x<sup>2</sup> + 4x 3</p>
<p>Which is <a href="../algebra/quadratic-equation.html">quadratic</a> with zeros at:</p>
<ul>
<li>x = 3/5</li>
<li>x = +1/3</li>
</ul>
<p>&nbsp;</p>
<p>Could they be maxima or minima? (Don't look at the graph yet!)</p>
<p>&nbsp;</p>
<p>The <a href="second-derivative.html">second derivative</a> is <b>y'' = 30x + 4</b></p>
<p>At x = 3/5:</p>
<div class="so">y'' = 30(3/5) + 4 = 14</div>
<div class="so">it is less than 0, so 3/5 is a local maximum</div>
<p>At x = +1/3:</p>
<div class="so">y'' = 30(+1/3) + 4 = +14</div>
<div class="so">it is greater than 0, so +1/3 is a local minimum</div>
<p>(Now you can look at the graph.)</p>
<p class="center"><img src="images/5x3-2x2-3x.gif" alt="5x^3 2x^2 3x" height="199" width="196"></p>
</div>
<h2>Words</h2>
<div class="words">
<p>A high point is called a <b>maximum</b> (plural <i><b>maxima</b></i>).</p>
<p>A low point is called a <b>minimum</b> (plural <i><b>minima</b></i>).</p>
<p>The general word for maximum or minimum is <b>extremum</b> (plural <b>extrema</b>).</p>
<p>We say <b>local</b> maximum (or minimum) when there may be higher (or lower) points elsewhere but not nearby.</p>
</div>
<h2>One More Example</h2>
<div class="example">
<h3>Example: Find the maxima and minima for:</h3>
<p class="center larger">y = x<sup>3</sup> 6x<sup>2</sup> + 12x 5</p>
<p>The derivative is:</p>
<p class="center larger"><span class="intbl"><em>d</em><strong>dx</strong></span>y = 3x<sup>2</sup> 12x + 12</p>
<p>Which is <a href="../algebra/quadratic-equation.html">quadratic</a> with only one zero at <b>x = 2</b></p>
<p>Is it a maximum or minimum?</p>
<p>&nbsp;</p>
<p>The <a href="second-derivative.html">second derivative</a> is <b>y'' = 6x 12</b></p>
<p>At x = 2:</p>
<div class="so">y'' = 6(2) 12 = 0</div>
<div class="so">it is 0, so the test fails</div>
<p>And here is why:</p>
<p class="center"><img src="images/x3-6x2-12x-5.gif" alt="x^3 6x^2 12x 5" height="207" width="171"></p>
<p>It is an <a href="inflection-points.html">Inflection Point</a> ("saddle point") ... the slope does become zero, but it is neither a maximum nor minimum.</p>
</div>
<p>&nbsp;</p>
<h2>Must Be Differentiable</h2>
<p>And there is an important technical point:</p>
<p>The function must be <b><a href="differentiable.html">differentiable</a></b> (the derivative must exist at each point in its domain).</p>
<div class="example">
<h3>Example: How about the function f(x) = |x| (<a href="../sets/function-absolute-value.html">absolute value</a>) ?</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>&nbsp;</td>
<td>|x| looks like this:</td>
<td>&nbsp;</td>
<td><img src="../sets/images/function-absolute.svg" alt="Absolute Value function"></td>
</tr>
</tbody></table>
<p>At x=0 it has a very pointy change!</p>
<p>In fact it is not differentiable there (as shown on the <a href="differentiable.html">differentiable</a> page).</p>
<p>So we can't use the derivative method for the absolute value function.</p>
</div>
<p>The function must also be <a href="continuity.html">continuous</a>, but any function that is differentiable is also continuous, so we are covered.</p>
<p>&nbsp;</p>
<div class="questions">
<script>
getQ(8915, 8916, 8917, 8921, 8922, 8924, 8918, 8919, 8920, 8923);
</script>&nbsp; </div>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/maxima-minima.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:06 GMT -->
</html>