new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
243 lines
17 KiB
HTML
243 lines
17 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-bernoulli.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:28 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>The Bernoulli Differential Equation</title>
|
||
<meta name="description" content="Learn how to solve this special first order differential equation.">
|
||
<script>Author='Les Bill Gates and Rod Pierce';</script>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 style="text-align: center;">The Bernoulli Differential Equation</h1>
|
||
|
||
<p class="center"><i>How to solve this special first order differential equation</i></p>
|
||
|
||
<p>A <b>Bernoulli equation</b> has this form:</p>
|
||
<p class="center"><span class="large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + P(x)y = Q(x)y<sup>n</sup></span><br>
|
||
where n is any Real Number but not 0 or 1</p>
|
||
|
||
<p class="dotpoint">When n = 0 the equation can be solved as a <a href="differential-equations-first-order-linear.html">First Order Linear Differential Equation</a>.</p>
|
||
<p class="dotpoint">When n = 1 the equation can be solved using <a href="separation-variables.html">Separation of Variables</a>.</p>
|
||
<div class="dotpoint">
|
||
<p>For other values of n we can solve it by substituting</p>
|
||
|
||
<p class="center large">u = y<sup>1−n</sup></p>
|
||
|
||
<p>and turning it into a linear differential equation (and then solve that).</p>
|
||
</div>
|
||
<p><br></p>
|
||
<div class="example">
|
||
<h3><b>Example 1:</b> Solve</h3>
|
||
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + x<sup>5</sup> y = x<sup>5</sup> y<sup>7</sup></p>
|
||
<p>It is a Bernoulli equation with P(x)=x<sup>5</sup>, Q(x)=x<sup>5</sup>, and n=7, let's try the substitution:</p>
|
||
<div class="fun">
|
||
<p class="center large">u = y<sup>1−n</sup></p>
|
||
<p class="center large">u = y<sup>-6</sup></p>
|
||
<p>In terms of y that is:</p>
|
||
<p class="center large">y = u<sup>(−<span class="intbl"><em>1</em><strong>6</strong></span>)</sup></p>
|
||
<p>Differentiate y with respect to x:</p>
|
||
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> = <span class="intbl"><em>−1</em><strong>6</strong></span> u<sup>(−<span class="intbl"><em>7</em><strong>6</strong></span>)</sup> <span class="intbl"><em>du</em><strong>dx</strong></span></p>
|
||
|
||
<p>Substitute <span class="intbl"><em>dy</em><strong>dx</strong></span> and y into the original equation <span class="intbl"><em>dy</em><strong>dx</strong></span> + x<sup>5</sup> y
|
||
= x<sup>5</sup> y<sup>7</sup></p>
|
||
<p class="center large"><span class="intbl"><em>−1</em><strong>6</strong></span>u<sup>(<span class="intbl"><em>−7</em><strong>6</strong></span>)</sup> <span class="intbl"><em>du</em><strong>dx</strong></span> + x<sup>5</sup>u<sup>(<span class="intbl"><em>−1</em><strong>6</strong></span>)</sup> = x<sup>5</sup>u<sup>(<span class="intbl"><em>−7</em><strong>6</strong></span>)</sup></p>
|
||
<p>Multiply all terms by −6u<sup>(<span class="intbl"><em>7</em><strong>6</strong></span>)</sup></p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> − 6x<sup>5</sup>u = −6x<sup>5</sup></p>
|
||
</div>
|
||
<p>The substitution worked! We now have an equation we can hopefully solve.</p>
|
||
<p>Simplify:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> = 6x<sup>5</sup>u − 6x<sup>5</sup></p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> = (u−1)6x<sup>5</sup></p>
|
||
<p>Using <a href="separation-variables.html">separation of variables</a>:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>u−1</strong></span> = 6x<sup>5</sup> dx</p>
|
||
<p>Integrate both sides:</p>
|
||
<p class="center large"><span class="int">∫</span><span class="intbl"><em>1</em><strong>u−1</strong></span> du = <span class="int">∫</span>6x<sup>5</sup> dx</p>
|
||
<p>Gets us:</p>
|
||
<p class="center large">ln(u−1) = x<sup>6</sup> + C</p>
|
||
<p class="center large">u−1 = e<sup>x<sup>6</sup> + C</sup></p>
|
||
<p class="center large">u = e<sup>(x<sup>6</sup> + c)</sup> + 1</p>
|
||
<p>Substitute back y = u<sup>(<span class="intbl"><em>−1</em><strong>6</strong></span>)</sup></p>
|
||
<p class="center large">y = ( e<sup>(x<sup>6</sup> + c)</sup> + 1 )<sup>(<span class="intbl"><em>−1</em><strong>6</strong></span>)</sup></p>
|
||
<p><b>Solved!</b></p>
|
||
<p>And we get these example curves:</p>
|
||
<p class="center"><img src="images/diff-eq-bernoulli-1.svg" alt="Sample Graph" height="340" width="550"> <span class="larger"><br>
|
||
</span></p>
|
||
</div>
|
||
<p>Let's look again at that substitution we did above. We started with:</p>
|
||
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + x<sup>5</sup>y = x<sup>5</sup>y<sup>7</sup></p>
|
||
<p>And ended with:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> − 6x<sup>5</sup>u = −6x<sup>5</sup></p>
|
||
|
||
<p>In fact, <b>in general</b>, we can go straight from</p>
|
||
<p class="center"><span class="large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + P(x)y = Q(x)y<sup>n</sup></span><br>
|
||
n is not 0 or 1</p>
|
||
<p>to:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> + (1−n)uP(x) = (1−n)Q(x)</p>
|
||
<p>Then solve that and finish by putting back <span class="large">y = u<sup>(<span class="intbl"><em>−1</em><strong>n−1</strong></span>)</sup></span></p>
|
||
<p>Let's do that in the next example.</p>
|
||
<div class="example">
|
||
<h3><b>Example 2:</b> Solve</h3>
|
||
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> − <span class="intbl"><em>y</em><strong>x</strong></span> = y<sup>9</sup></p>
|
||
<p>It is a Bernoulli equation with n = 9, P(x) = <span class="intbl"><em>−1</em><strong>x</strong></span> and Q(x) = 1</p>
|
||
<div class="fun">
|
||
<p>Knowing it is a Bernoulli equation we can jump straight to this:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> + (1−n)uP(x) = (1−n)Q(x)</p>
|
||
<p>Which, after substituting n, P(X) and Q(X) becomes:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> + <span class="intbl"><em>8u</em><strong>x</strong></span> = −8</p>
|
||
</div>
|
||
<p>Now let's try to solve that.</p>
|
||
<p>Unfortunately we cannot separate the variables, but the equation is linear and is
|
||
of the form <span class="larger"><span class="intbl"><em>du</em><strong>dx</strong></span> + R(X)u = S(x)</span> with <span class="larger">R(X) = <span class="intbl"><em>8</em><strong>x</strong></span></span> and <span class="larger">S(X) = −8</span></p>
|
||
<p>Which we can solve with steps 1 to 9:</p>
|
||
<p>Step 1: Let u=vw</p>
|
||
<p>Step 2: Differentiate u = vw</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> = v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w<span class="intbl"><em>dv</em><strong>dx</strong></span></p>
|
||
<p>Step 3: Substitute <span class="larger">u = vw</span> and <span class="larger"><span class="intbl"><em>du</em><strong>dx</strong></span> = v <span class="intbl"><em>dw</em><strong>dx</strong></span> + w <span class="intbl"><em>dv</em><strong>dx</strong></span></span> into <span class="larger"><span class="intbl"><em>du</em><strong>dx</strong></span> + <span class="intbl"><em>8u</em><strong>x</strong></span> = −8</span>:</p>
|
||
<p class="center large">v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w<span class="intbl"><em>dv</em><strong>dx</strong></span> + <span class="intbl"><em>8vw</em><strong>x</strong></span> = −8</p>
|
||
<p>Step 4: Factor the parts involving w.</p>
|
||
<p class="center large">v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w(<span class="intbl"><em>dv</em><strong>dx</strong></span> + <span class="intbl"><em>8v</em><strong>x</strong></span>) = −8</p>
|
||
<p>Step 5: Set the part inside () equal to zero, and separate the variables.</p>
|
||
<p class="center large"><span class="intbl"><em>dv</em><strong>dx</strong></span> + <span class="intbl"><em>8v</em><strong>x</strong></span> = 0</p>
|
||
<p class="center large"><span class="intbl"><em>dv</em><strong>v</strong></span> = <span class="intbl"><em>−8dx</em><strong>x</strong></span></p>
|
||
<p>Step 6: Solve this separable differential equation to find v.</p>
|
||
<p class="center large"><span class="int">∫</span><span class="intbl"><em>dv</em><strong>v</strong></span> = − <span class="int">∫</span><span class="intbl"><em>8dx</em><strong>x</strong></span></p>
|
||
<p class="center large">ln(v) = ln(k) − 8ln(x)</p>
|
||
<p class="center large">v = kx<sup>-8</sup></p>
|
||
<p>Step 7: Substitute v back into the equation obtained at step 4.</p>
|
||
<p class="center large">kx<sup>-8</sup> <span class="intbl"><em>dw</em><strong>dx</strong></span> = −8</p>
|
||
<p>Step 8: Solve this to find v</p>
|
||
<p class="center large">kx<sup>-8</sup> dw = −8 dx</p>
|
||
<p class="center large">k dw = −8x<sup>8</sup> dx</p>
|
||
<p class="center large"><span class="int">∫</span> k dw = <span class="int">∫</span> −8x<sup>8</sup> dx</p>
|
||
<p class="center large">kw = <span class="intbl"><em>−8</em><strong>9</strong></span>x<sup>9</sup> + C</p>
|
||
<p class="center large">w = <span class="intbl"><em>1</em><strong>k</strong></span>( <span class="intbl"><em>−8</em><strong>9</strong></span> x<sup>9</sup> + C )</p>
|
||
<p>Step 9: Substitute into u = vw to find the solution to the original equation.</p>
|
||
<p class="center large">u = vw = <span class="intbl"><em>kx<sup>-8</sup></em><strong>k</strong></span>( <span class="intbl"><em>−8</em><strong>9</strong></span> x<sup>9</sup> + C )</p>
|
||
<p class="center large">u = x<sup>-8</sup> ( <span class="intbl"><em>−
|
||
8</em><strong>9</strong></span> x<sup>9</sup> + C )</p>
|
||
<p class="center large">u = <span class="intbl"><em>−8</em><strong>9</strong></span>x + Cx<sup>-8</sup></p>
|
||
<p>Now, the substitution we used was:</p>
|
||
<p class="center large">u = y<sup>1−n</sup> = y<sup>-8</sup></p>
|
||
<p>Which in our case means we need to substitute back y = u<sup>(<span class="intbl"><em>−1</em><strong>8</strong></span>)</sup> :</p>
|
||
<p class="center large">y = ( <span class="intbl"><em>−8</em><strong>9</strong></span> x + c x<sup>-8</sup> ) <sup>(<span class="intbl"><em>−1</em><strong>8</strong></span>)</sup></p>
|
||
<p><b>Done!</b></p>
|
||
<p>And we get this nice family of curves:</p>
|
||
<p class="center"><img src="images/diff-eq-bernoulli-2.svg" alt="Sample Graph" height="340" width="550"></p>
|
||
</div>
|
||
<div class="example">
|
||
<h3><b>Example 3:</b> Solve</h3>
|
||
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + <span class="intbl"><em>2y</em><strong>x</strong></span> = x<sup>2</sup>y<sup>2</sup>sin(x)</p>
|
||
<p>It is a Bernoulli equation with n = 2, P(x) = <span class="intbl"><em>2</em><strong>x</strong></span> and Q(x) = x<sup>2</sup>sin(x)</p>
|
||
<div class="fun">
|
||
<p>We can jump straight to this:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> + (1−n)uP(x) = (1−n)Q(x)</p>
|
||
<p>Which, after substituting n, P(X) and Q(X) becomes:</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> − <span class="intbl"><em>2u</em><strong>x</strong></span> = − x<sup>2</sup>sin(x)</p>
|
||
</div><br>
|
||
<p>In this case, we cannot separate the variables, but the equation is linear and of the form <span class="larger"> <span class="intbl"><em>du</em><strong>dx</strong></span> + R(X)u = S(x) </span> with <span class="larger">R(X) = <span class="intbl"><em>−2</em><strong>x</strong></span> </span> and <span class="larger">S(X) = −x<sup>2</sup>sin(x)</span></p>
|
||
<p>Solve the steps 1 to 9:</p>
|
||
<p>Step 1: Let u=vw</p>
|
||
<p>Step 2: Differentiate u = vw</p>
|
||
<p class="center large"><span class="intbl"><em>du</em><strong>dx</strong></span> = v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w<span class="intbl"><em>dv</em><strong>dx</strong></span></p>
|
||
<p>Step 3: Substitute <span class="larger">u = vw</span> and <span class="larger"><span class="intbl"><em>du</em><strong>dx</strong></span> = v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w<span class="intbl"><em>dv</em><strong>dx</strong></span></span> into <span class="larger"><span class="intbl"><em>du</em><strong>dx</strong></span> − <span class="intbl"><em>2u</em><strong>x</strong></span> = −x<sup>2</sup>sin(x)</span></p>
|
||
<p class="center large">v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w<span class="intbl"><em>dv</em><strong>dx</strong></span> − <span class="intbl"><em>2vw</em><strong>x</strong></span> = −x<sup>2</sup>sin(x)</p>
|
||
<p>Step 4: Factor the parts involving w.</p>
|
||
<p class="center large">v<span class="intbl"><em>dw</em><strong>dx</strong></span> + w(<span class="intbl"><em>dv</em><strong>dx</strong></span> − <span class="intbl"><em>2v</em><strong>x</strong></span>) = −x<sup>2</sup>sin(x)</p>
|
||
<p>Step 5: Set the part inside () equal to zero, and separate the variables.</p>
|
||
<p class="center large"><span class="intbl"><em>dv</em><strong>dx</strong></span> − <span class="intbl"><em>2v</em><strong>x</strong></span> = 0</p>
|
||
<p class="center large"><span class="intbl"><em>1</em><strong>v</strong></span>dv = <span class="intbl"><em>2</em><strong>x</strong></span>dx</p>
|
||
<p>Step 6: Solve this separable differential equation to find v.</p>
|
||
<p class="center large"><span class="int">∫</span><span class="intbl"><em>1</em><strong>v</strong></span> dv = <span class="int">∫</span><span class="intbl"><em>2</em><strong>x</strong></span> dx</p>
|
||
<p class="center large">ln(v) = 2ln(x) + ln(k)</p>
|
||
<p class="center large">v = kx<sup>2</sup></p>
|
||
<p>Step 7: Substitute u back into the equation obtained at step 4.</p>
|
||
<p class="center large">kx<sup>2</sup><span class="intbl"><em>dw</em><strong>dx</strong></span> = −x<sup>2</sup>sin(x)</p>
|
||
<p>Step 8: Solve this to find v.</p>
|
||
<p class="center large">k dw = −sin(x) dx</p>
|
||
<p class="center large"><span class="int">∫</span>k dw = <span class="int">∫</span>−sin(x) dx</p>
|
||
<p class="center large">kw = cos(x) + C</p>
|
||
<p class="center large">w = <span class="intbl"><em>cos(x) + C</em><strong>k</strong></span></p>
|
||
<p>Step 9: Substitute into u = vw to find the solution to the original equation.</p>
|
||
<p class="center large">u = kx<sup>2</sup><span class="intbl"><em>cos(x) + C</em><strong>k</strong></span></p>
|
||
<p class="center large">u = x<sup>2</sup>(cos(x)+C)</p>
|
||
<p>Finally we substitute back y = u<sup>-1</sup></p>
|
||
<p class="center large">y = <span class="intbl"><em>1</em><strong>x<sup>2</sup> (cos(x)+C)</strong></span></p>
|
||
<p>Which looks like this (example values of C):</p>
|
||
<p class="center"><img src="images/graph-1-x2cosx.svg" alt="1 / (x^2(cos(x)+C))" height="340" width="550"></p>
|
||
</div>
|
||
<p> </p>
|
||
<p class="words">The Bernoulli Equation is attributed to Jacob Bernoulli (1655−1705), one of
|
||
a family of famous Swiss mathematicians.</p>
|
||
<p><br></p>
|
||
|
||
<div class="questions">9469, 9470, 9471, 9472, 9473, 9474, 9475, 9476, 9477, 9478</div>
|
||
|
||
<div class="related">
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-bernoulli.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:29 GMT -->
|
||
</html> |