new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
194 lines
11 KiB
HTML
194 lines
11 KiB
HTML
<!doctype html>
|
||
<html lang="en"><!-- #BeginTemplate "../Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/theorems-lemmas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:11 GMT -->
|
||
<head>
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Theorems, Corollaries, Lemmas</title>
|
||
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
||
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
|
||
<link rel="stylesheet" type="text/css" href="../style3.css" />
|
||
<script src="../main3.js" type="text/javascript"></script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
<div class="bg">
|
||
<div id="stt"></div>
|
||
<div id="hdr"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
|
||
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
|
||
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
|
||
<div id="adTopOuter" class="centerfull noprint">
|
||
<div id="adTop">
|
||
<script type="text/javascript">document.write(getAdTop());</script>
|
||
</div>
|
||
</div>
|
||
<div id="adHide">
|
||
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
||
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
||
<a href="../about-ads.html">About Ads</a></div>
|
||
</div>
|
||
<div id="menuWide" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(0));</script>
|
||
</div>
|
||
<div id="linkto">
|
||
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
|
||
</div>
|
||
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
|
||
<div id="menuSlim" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(1));</script>
|
||
</div>
|
||
<div id="menuTiny" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(2));</script>
|
||
</div>
|
||
<div id="extra"></div>
|
||
</div>
|
||
<div id="content" role="main"><!-- #BeginEditable "Body" -->
|
||
|
||
<h1 align="center">Theorems, Corollaries, Lemmas</h1>
|
||
<p> </p>
|
||
<p>What are all those things? They sound so impressive!</p>
|
||
<p>Well, they are basically just <b>facts</b>: some result that has been arrived at.</p>
|
||
<ul>
|
||
<li>A Theorem is a <b>major</b> result<br />
|
||
</li>
|
||
<li>A Corollary is a theorem that <b>follows on</b> from another theorem<br />
|
||
</li>
|
||
<li>A Lemma is a <b>small</b> result (less important than a theorem) </li>
|
||
</ul>
|
||
<h2>Examples</h2>
|
||
<p>Here is an example from Geometry: </p>
|
||
<div class="example">
|
||
<h3>Example: A Theorem and a Corollary</h3>
|
||
|
||
<h4>Theorem: </h4>
|
||
<p><a href="../angle180.html">Angles on one side of a straight line always add to 180°</a>. </p>
|
||
<p align="center"><img src="../geometry/images/angle180.svg" alt="angles add to 180 degrees" /></p>
|
||
<p> </p>
|
||
<h4> Corollary: </h4>
|
||
<p>Following on from that theorem we find that where two lines intersect, the angles opposite each other (called <a href="../geometry/vertical-angles.html">Vertical Angles</a>) are <b>equal</b> (a=c and b=d in the diagram). </p>
|
||
<p align="center"><img src="../geometry/images/vertically-opposite-abcd.svg" alt="vertically-opposite-abcd" /><span class="larger"><br>
|
||
Angle a = angle c<br>Angle b = angle d</span> </p>
|
||
<h4>Proof: </h4>
|
||
<p>Angles a and b add to 180° because they are along a line:</p>
|
||
<p class="so">a + b = 180°</p>
|
||
<p class="so"> a = 180° − b</p>
|
||
<p>Likewise for angles b and c</p>
|
||
<p class="so">b + c = 180°</p>
|
||
<p class="so"> c = 180° − b</p>
|
||
<p>And since both a and c equal 180° − b, then</p>
|
||
<p class="so">a = c </p>
|
||
|
||
</div>
|
||
<p> </p>
|
||
|
||
<p>And a slightly more complicated example from Geometry:</p>
|
||
<div class="example">
|
||
<h3>Example: A Theorem, a Corollary to it, and also a Lemma!</h3>
|
||
<h4>Theorem: </h4>
|
||
<p align="center"><img src="../geometry/images/inscribed-angle-1.gif" width="183" height="183" alt="inscribed angle 2a and a" /><span class="larger"><br>
|
||
An inscribed angle a° is half of the central angle 2a°</span><br />
|
||
Called the <b><a href="../geometry/circle-theorems.html">Angle at the Center Theorem</a></b>.</p>
|
||
<p><b>Proof: Join the center O to A. </b></p>
|
||
<p class="center"><img src="../geometry/images/inscribed-angle-proof.gif" width="186" height="184" alt="inscribed angle proof" /></p>
|
||
<p>Triangle ABO is <a href="../triangle.html">isosceles</a> (two equal sides, two equal angles), so:</p>
|
||
<div class="so"> Angle OBA = Angle BAO = <b>b°</b> </div>
|
||
<p>And, using <a href="../angle180.html">Angles of a Triangle add to 180°</a>:</p>
|
||
<div class="so">Angle AOB = (180 − 2b)°</div>
|
||
<p>Triangle ACO is isosceles, so:</p>
|
||
<div class="so"> Angle OCA = Angle CAO = <b>c°</b> </div>
|
||
<p>And, using <a href="../angle180.html">Angles of a Triangle add to 180°</a>:</p>
|
||
<div class="so">Angle AOC = (180 − 2c)°</div>
|
||
<p>And, using <a href="../angle360.html">Angles around a point add to 360°</a>: </p><div class="tbl">
|
||
<div class="row"><span class="left">Angle BOC </span><span class="right">= 360° − (180 − 2b)° − (180 − 2c)° </span></div>
|
||
<div class="row"><span class="left"> </span><span class="right">= 2b° + 2c°</span></div>
|
||
<div class="row"><span class="left"> </span><span class="right">= 2(b + c)° </span></div>
|
||
</div>
|
||
<p>Replace <b>b + c</b> with <b>a</b>, we get:</p>
|
||
<p class="center larger">Angle BAC = a° and Angle BOC = 2a° </p>
|
||
<p align="center"><img src="../geometry/images/inscribed-angle-1.gif" width="183" height="183" alt="inscribed angle 2a and a" /><span class="larger"><br>
|
||
</span></p>
|
||
<p>And we have proved the theorem.</p>
|
||
<p>(That was a "major" result, so is a Theorem.)</p>
|
||
<p> </p>
|
||
<h4>Corollary</h4>
|
||
<p>(This is called the <i>"Angles Subtended by the Same Arc Theorem</i>", but it’s really just a <b>Corollary</b> of the <i>"Angle at the Center Theorem"</i>) </p>
|
||
<p class="larger">Keeping the endpoints fixed ... ... the angle a° is always the same, no matter where it is on the circumference:</p>
|
||
<p class="center"><img src="../geometry/images/inscribed-angle-2.gif" width="181" height="179" alt="inscribed angle a and a" /></p>
|
||
<p>So, Angles Subtended by the Same Arc are equal.</p>
|
||
<p> </p>
|
||
<h4>Lemma</h4>
|
||
<p>(This is sometimes called the <i>"Angle in the Semicircle Theorem"</i>, but it’s really just a <b>Lemma</b> to the <i>"Angle at the Center Theorem"</i>) </p>
|
||
<p class="center"><img src="../geometry/images/inscribed-angle-1.gif" width="183" height="183" alt="inscribed angle 2a and a" /><img src="../geometry/images/angle-semicircle-1a.gif" width="182" height="180" alt="angle semicircle 180 and 90" /></p>
|
||
<p>In the special case where the central angle forms a diameter of the circle:</p>
|
||
<p class="center larger"> 2a° = 180° , so a° = 90° </p>
|
||
<p>So an angle inscribed in a semicircle is always a right angle. </p>
|
||
<p>(That was a "small" result, so it is a Lemma.) </p>
|
||
</div>
|
||
<p> </p>
|
||
<p>Another example, related to <a href="../pythagoras.html">Pythagoras' Theorem</a>:</p>
|
||
<div class="example">
|
||
<h3>Example: </h3>
|
||
<h4>Theorem</h4>
|
||
<p> If m and n are any two whole numbers and </p>
|
||
<ul>
|
||
<li>a = m<sup>2</sup> − n<sup>2</sup></li>
|
||
<li>b = 2mn</li>
|
||
<li>c = m<sup>2</sup> + n<sup>2</sup></li>
|
||
</ul>
|
||
<p>then a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup><br />
|
||
</p>
|
||
<p><b>Proof</b>:</p>
|
||
|
||
<div class="tbl">
|
||
<div class="row"><span class="left"><b>a<sup>2</sup> + b<sup>2</sup></b> </span><span class="right">= (m<sup>2</sup> − n<sup>2</sup>)<sup>2</sup> + (2mn)<sup>2</sup> </span></div>
|
||
<div class="row"><span class="left"> </span><span class="right">= m<sup>4</sup> − 2m<sup>2</sup>n<sup>2</sup> + n<sup>4</sup> + 4m<sup>2</sup>n<sup>2</sup> </span></div>
|
||
<div class="row"><span class="left"> </span><span class="right">= m<sup>4</sup> + 2m<sup>2</sup>n<sup>2</sup> + n<sup>4</sup></span></div>
|
||
<div class="row"><span class="left"> </span><span class="right">= (m<sup>2</sup> + n<sup>2</sup>)<sup>2</sup></span></div>
|
||
<div class="row"><span class="left"> </span><span class="right"><b>= c<sup>2</sup></b> </span></div>
|
||
</div>
|
||
<p>(That was a "major" result.)</p>
|
||
<p> </p>
|
||
<h4>Corollary</h4>
|
||
<p> a, b and c, as defined above, are a <a href="../numbers/pythagorean-triples.html">Pythagorean Triple</a></p>
|
||
<p> <b>Proof</b>:</p>
|
||
<p align="center"> From the Theorem <b>a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></b>, <br>
|
||
so a, b and c are a Pythagorean Triple</p>
|
||
<p>(That result "followed on" from the previous Theorem.)</p>
|
||
<p> </p>
|
||
<h4>Lemma</h4>
|
||
<p> If m = 2 and n = 1, then we get the Pythagorean triple 3, 4 and 5</p>
|
||
<p><b>Proof</b>:</p>
|
||
<p>If m = 2 and n = 1, then </p>
|
||
<ul>
|
||
<li>a = 2<sup>2</sup> − 1<sup>2</sup> = 4 − 1 = <b>3</b></li>
|
||
<li>b = 2 × 2 × 1 = <b>4</b></li>
|
||
<li>c = 2<sup>2</sup> + 1<sup>2</sup> = 4 + 1 = <b>5</b></li>
|
||
</ul>
|
||
<p>(That was a "small" result.) </p>
|
||
|
||
</div><p> </p>
|
||
<div class="related"><a href="index.html">Algebra Index</a></div>
|
||
<!-- #EndEditable --></div>
|
||
<div id="adend" class="centerfull noprint">
|
||
<script type="text/javascript">document.write(getAdEnd());</script>
|
||
</div>
|
||
<div id="footer" class="centerfull noprint">
|
||
<script type="text/javascript">document.write(getFooter());</script>
|
||
</div>
|
||
<div id="copyrt">
|
||
Copyright © 2017 MathsIsFun.com
|
||
</div>
|
||
|
||
<script type="text/javascript">document.write(getBodyEnd());</script>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/theorems-lemmas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:12 GMT -->
|
||
</html>
|