Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

248 lines
13 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/factoring.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:28 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Factoring in Algebra</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Factoring in Algebra</h1>
<h2>Factors</h2>
<p>Numbers have <a href="../numbers/factors-multiples.html">factors</a>:</p>
<p align="center"><img src="../numbers/images/factor-2x3.svg" alt="factors 2x3=6" /></p>
<p>And expressions (like <b>x<sup>2</sup>+4x+3</b>) also have factors:</p>
<p align="center"><img src="images/polynomial-factors.svg" alt="factors" /></p>
<h2>Factoring</h2>
<p>Factoring (called &quot;<b>Factorising</b>&quot; in the UK) is the process of <b>finding the factors</b>:</p>
<div class="def">
<p> Factoring: Finding what to multiply together to get an expression.</p>
</div>
<p>It is like &quot;splitting&quot; an expression into a multiplication of simpler expressions.</p>
<div class="example">
<h3>Example: factor <span class="large">2y+6</span></h3>
<p>Both 2y and 6 have a common factor of 2: </p>
<ul>
<li><span class="large" align="center">2y is 2 &times; y</span></li>
<li><span class="large" align="center">6 is 2 &times; 3</span></li>
</ul>
<p>So we can factor the whole expression into: </p>
<p align="center" class="large">2y+6 = 2(y+3)</p>
<p>So <b>2y+6</b> has been &quot;factored into&quot; <b>2</b> and <b>y+3</b></p>
</div>
<p>Factoring is also the opposite of <a href="expanding.html">Expanding</a>:</p>
<p align="center"><img src="images/expand-vs-factor.svg" alt="expand vs factor" /></p>
<h2>Common Factor</h2>
<p>In the previous example we saw that 2y and 6 had a common factor of <b>2</b></p>
<p>But to do the job properly we need the <b>highest common factor</b>, including any variables</p>
<div class="example">
<h3>Example: factor <span class="large">3y<sup>2</sup>+12y</span></h3>
<p>Firstly, 3 and 12 have a common factor of <span class="large">3</span>.</p>
<p>So we could have:</p>
<p align="center"><span class="large">3y<sup>2</sup>+12y = 3(y<sup>2</sup>+4y)</span></p>
<p>But we can do better!</p>
<p><span class="large">3y<sup>2</sup></span> and <span class="large">12y</span> also share the variable <span class="large">y</span>.</p>
<p>Together that makes <span class="large">3y</span>:</p>
<ul>
<li><span class="large" align="center">3y<sup>2</sup> is 3y &times; y</span></li>
<li><span class="large" align="center">12y is 3y &times; 4</span></li>
</ul>
<p>&nbsp;</p>
<p>So we can factor the whole expression into:</p>
<p align="center" class="large">3y<sup>2</sup>+12y = 3y(y+4)</p>
<p>&nbsp;</p>
<p>Check: <b>3y(y+4) = 3y &times; y + 3y &times; 4 = 3y<sup>2</sup>+12y</b></p>
</div>
<h2>More Complicated Factoring</h2>
<h3>Factoring Can Be Hard !</h3>
<p>The examples have been simple so far, but factoring <b>can</b> be very tricky.</p>
<p> Because we have to figure <b>what got multiplied</b> to produce the expression we are given!</p>
<p>&nbsp;</p>
<p class="center"><img src="images/factor-cake.gif" alt="factoring cake" width="219" height="55" /><br>
It is like trying to find which ingredients <br>
went into a cake to make it so delicious.
<br>
<span class="larger">It can be hard to figure out!</span></p>
<h3>Experience Helps</h3>
<p>With more experience factoring becomes easier. </p>
<div class="example">
<h3>Example: Factor <b>4x<sup>2</sup> &minus; 9</b></h3>
<p>Hmmm... there don't seem to be any common factors.</p>
<p>But knowing the <a href="special-binomial-products.html">Special Binomial Products</a> gives us a clue called the <b>&quot;difference of squares&quot;</b>: </p>
<p align="center"><img src="images/diff-squares-example.gif" alt="difference of squares" width="130" height="99" /></p>
<p align="center">Because <b>4x<sup>2</sup></b> is <b>(2x)<sup>2</sup></b>, and <b>9</b> is <b>(3)<sup>2</sup></b>, </p>
<p>So we have:</p>
<p align="center" class="larger">4x<sup>2</sup> &minus; 9 = (2x)<sup>2</sup> &minus; (3)<sup>2</sup></p>
<p>And that can be produced by the difference of squares formula:</p>
<p align="center" class="larger">(a+b)(a&minus;b) = a<sup>2</sup> &minus; b<sup>2</sup></p>
<p class="center">Where <b>a</b> is 2x, and <b>b</b> is 3.</p>
<p>So let us try doing that:</p>
<p align="center" class="large">(2x+3)(2x&minus;3) = (2x)<sup>2</sup> &minus; (3)<sup>2</sup> = 4x<sup>2</sup> &minus; 9</p>
<p>Yes!</p><p>&nbsp;</p>
<p>So the factors of <b>4x<sup>2</sup> &minus; 9</b> are <b>(2x+3)</b> and <b>(2x&minus;3)</b>:</p>
<p align="center" class="large">Answer: 4x<sup>2</sup> &minus; 9 = (2x+3)(2x&minus;3)</p>
</div>
<p>How can you learn to do that? By getting lots of practice, and knowing &quot;Identities&quot;!</p>
<p>&nbsp;</p>
<h3>Remember these Identities</h3>
<p>Here is a list of common &quot;Identities&quot; (including the <b>&quot;difference of squares&quot;</b> used above).</p>
<p>It is worth remembering these, as they can make factoring easier.</p>
<table border="0" align="center" cellpadding="6">
<tr>
<td colspan="3" align="center"><img src="images/expand-factor.svg" alt="factor expand" /></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>2</sup> &minus; b<sup>2</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a+b)(a&minus;b)</span></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>2</sup> + 2ab + b<sup>2</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a+b)</span><span class="large">(a+b)</span></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>2</sup> &minus; 2ab + b<sup>2</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a&minus;b)</span><span class="large">(a&minus;b)</span></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>3</sup> + b<sup>3</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a+b)(a<sup>2</sup>&minus;ab+b<sup>2</sup>)</span></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>3</sup> &minus; b<sup>3</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a&minus;b)(a<sup>2</sup>+ab+b<sup>2</sup>)</span></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>3</sup>+3a<sup>2</sup>b+3ab<sup>2</sup>+b<sup>3</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a+b)<sup>3</sup></span></td>
</tr>
<tr>
<td align="right"><span class="large">a<sup>3</sup>&minus;3a<sup>2</sup>b+3ab<sup>2</sup>&minus;b<sup>3</sup></span></td>
<td><span class="large">&nbsp;=&nbsp;</span></td>
<td><span class="large">(a&minus;b)<sup>3</sup></span></td>
</tr>
</table>
<p>There are many more like those, but those are the most useful ones.</p>
<h2>Advice</h2>
<p>The factored form is usually best.</p>
<p>When trying to factor, follow these steps:</p>
<ul>
<div class="bigul">
<li>&quot;Factor out&quot; any common terms</li>
<li>See if it fits any of the identities, plus any more you may know</li>
<li>Keep going till you can't factor any more</li>
</div>
</ul>
<p>There are also Computer Algebra Systems (called &quot;CAS&quot;) such as <i>Axiom, Derive, Macsyma, Maple, Mathematica, MuPAD, Reduce</i> and many more that are good at factoring.</p>
<h2>More Examples</h2>
<p>Experience does help, so here are more examples to help you on the way:</p>
<div class="example">
<h3>Example: w<sup>4</sup> &minus; 16</h3>
<p>An exponent of 4? Maybe we could try an exponent of 2:</p>
<p align="center" class="larger">w<sup>4</sup> &minus; 16 = (w<sup>2</sup>)<sup>2 </sup>&minus; 4<sup>2</sup></p>
<p>Yes, it is the difference of squares</p>
<p align="center" class="larger">w<sup>4</sup> &minus; 16 = (w<sup>2</sup><sup> </sup>+ 4)(w<sup>2</sup><sup> </sup>&minus; 4)</p>
<p>And &quot;(w<sup>2</sup><sup> </sup>&minus; 4)&quot; is another difference of squares</p>
<p align="center" class="larger">w<sup>4</sup> &minus; 16 = (w<sup>2</sup><sup> </sup>+ 4)(w<sup> </sup>+ 2)(w<sup> </sup>&minus; 2)</p>
<p>That is as far as I can go (unless I use imaginary numbers)</p>
</div>
<div class="example">
<h3>Example: 3u<sup>4</sup> &minus; 24uv<sup>3</sup></h3>
<p>Remove common factor &quot;3u&quot;:</p>
<p align="center" class="larger">3u<sup>4</sup> &minus; 24uv<sup>3</sup> = 3u(u<sup>3</sup> &minus; 8v<sup>3</sup>)</p>
<p>Then a difference of cubes:</p>
<p align="center" class="larger">3u<sup>4</sup> &minus; 24uv<sup>3</sup> = 3u(u<sup>3</sup> &minus; (2v)<sup>3</sup>)</p>
<p align="center" class="larger"> = 3u(u&minus;2v)(u<sup>2</sup>+2uv+4v<sup>2</sup>)</p>
<p>That is as far as I can go.</p>
</div>
<div class="example">
<h3>Example: z<sup>3</sup> &minus; z<sup>2</sup> &minus; 9z + 9</h3>
<p>Try factoring the first two and second two separately:</p>
<p align="center" class="larger">z<sup>2</sup>(z&minus;1) &minus; 9(z&minus;1)</p>
<p>Wow, <span class="larger">(z-1)</span> is on both, so let us use that:</p>
<p align="center" class="larger">(z<sup>2</sup>&minus;9)(z&minus;1)</p>
<p align="center" class="larger"> </p>
<p>And <span class="larger">z<sup>2</sup>&minus;9</span> is a difference of squares</p>
<p align="center" class="larger">(z&minus;3)(z+3)(z&minus;1)</p>
<p align="center" class="larger"></p>
<p>That is as far as I can go.</p>
</div>
<p>Now get some more experience:</p>
<div class="questions">
<script type="text/javascript">getQ(338, 339, 2047, 2048, 2049, 178, 2050, 3177, 3178, 3179);</script>&nbsp;
</div>
<div class="related">
<a href="index.html">Algebra Index</a> <a href="factoring-quadratics.html">Factoring Quadratics</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/factoring.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:29 GMT -->
</html>