Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

318 lines
16 KiB
HTML

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/physics/force-calculations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:39 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Force Calculations</title>
<script>reSpell=[["tires","tyres"]];</script>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Force Calculations</h1>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/force-push-pull.jpg" width="240" height="229" alt="force push pull wrestlers" /></p>
<p>&nbsp;</p>
<p class="large"><a href="force.html">Force</a> is push or pull.</p>
<p>&nbsp;</p>
<p>Forces on an object are usually <b>balanced</b> (if unbalanced the object accelerates):</p>
<div style="clear:both"></div>
<div class="simple">
<table style="border: 0; margin:auto;">
<tr>
<td><span class="center"><img src="images/forces-balanced.gif" width="135" height="206" alt="forces balanced" /><br>
</span></td>
<td>&nbsp;</td>
<td valign="bottom"><span class="center"><img src="images/forces-unbalanced.gif" width="132" height="187" alt="forces unbalanced" /><br>
</span></td>
</tr>
<tr align="center">
<th><span class="center">Balanced </span></th>
<td>&nbsp;</td>
<th valign="bottom"><span class="center">Unbalanced </span></th>
</tr>
<tr align="center">
<td><span class="center"><i>No Acceleration</i></span></td>
<td>&nbsp;</td>
<td valign="bottom"><span class="center"><i>Acceleration</i></span></td>
</tr>
</table>
</div>
<div style="clear:both"></div>
<div class="example">
<h3>Example: The forces at the top of this bridge tower are <b>in balance</b> (it is not accelerating):</h3>
<p class="center"><img src="images/suspension-bridge.jpg" width="240" height="142" alt="suspension bridge" /></p>
<p>The cables pull <b>downwards</b> equally to the left and right, and that is balanced by the tower's <b>upwards</b> push. (Does the tower push? Yes! Imagine you stand there instead of the tower.)</p>
<p>We can <a href="../algebra/mathematical-models.html">model</a> the forces like this:</p>
<p class="center"><img src="images/suspension-bridge-forces1.svg" alt="suspension bridge forces" /></p>
<p>And when we put them <b>head-to-tail </b>we see they <b>close back on themselves</b>, meaning the net effect is zero:</p>
<p class="center"><img src="images/suspension-bridge-forces2.svg" alt="suspension bridge forces" /><br>
The forces are in balance.</p>
</div>
<p class="words">Forces in balance are said to be <b>in equilibrium</b>: there is also no change in motion.</p>
<h2>Free Body Diagrams</h2>
<p>The first step is to draw a Free Body Diagram&nbsp;(also called a Force Diagram)</p>
<p class="words"><b>Free Body Diagram</b>: A sketch where a body is cut free from the world except for the forces acting on it.</p>
<p>In the bridge example the free body diagram for the top of the tower is:</p>
<p class="center"><img src="images/suspension-bridge-free-body.svg" alt="suspension bridge free body" /><br>
<b>Free Body Diagram</b></p>
<p>It helps us to think clearly about the <b>forces acting on the body</b>.</p>
<div class="example">
<h3>Example: Car on a Highway</h3>
<p>What are the forces on a car cruising down the highway?</p>
<p class="center"><img src="images/force-ex3a.gif" width="300" height="103" alt="car moving" /></p>
<p>The engine is working hard, so why doesn't the car continue to accelerate?</p>
<p>Because the driving force is balanced by:</p>
<ul>
<li>Air resistance (put simply: the air resists being pushed around),</li>
<li>Rolling resistance, also called rolling friction (the tires resist having their shape changed)</li>
</ul>
<p>Like this:</p>
<p class="center"><img src="images/force-ex3b.svg" alt="car forces: driving, weight, air, tires" /><br>
<b>Free Body Diagram</b></p>
<p><b>W</b> is the car's weight,</p>
<p><b>R<sub>1</sub></b> and <b>R<sub>2</sub></b> are the rolling resistance of the tires,</p>
<p><b>N<sub>1</sub></b> and <b>N<sub>2</sub></b> are the reaction forces (balancing out the car's weight).</p>
<p><i>Note: steel wheels (like on trains) have less rolling resistance, but are way too slippery on the road!</i></p>
</div>
<h2>Calculations</h2>
<p>Force is a <a href="../algebra/vectors.html">vector</a>. A vector has <b>magnitude</b> (size) and <b>direction</b>:</p>
<p class="center"><img src="../algebra/images/vector-mag-dir.svg" alt="vector magnitude and direction" /></p>
<p>We can model the forces by drawing arrows of the correct size and direction. Like this:</p>
<div class="example">
<h3>Example: Admiring the View</h3>
<p>Brady stands on the edge of a balcony supported by a horizontal beam and a strut:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/force-ex2a.svg" alt="force man on beam with strut at 60 degrees" /></p>
<p>&nbsp;</p>
<p>He weighs 80kg.</p>
<p>What are the forces?</p>
<p>&nbsp;</p>
<p>Let's take the spot he is standing on and think about the forces just there:</p>
<p class="center"><img src="images/force-ex2b.svg" alt="free body diagram man on beam with strut at 60 degrees" /></p>
<h3>His Weight</h3>
<p>His 80 kg mass creates a downward force due to Gravity.</p>
<p>Force is mass times acceleration: <span class="large"><b>F</b> = m<b>a</b></span></p>
<p>The acceleration due to gravity on Earth is 9.81 m/s<sup>2</sup>, so <span class="large"> <b>a</b> = 9.81 m/s<sup>2</sup></span></p>
<p class="center"><b>F</b> = 80 kg &times; 9.81 m/s<sup>2</sup></p>
<p class="center"><b>F</b> = 785 N</p>
<h3>The Other Forces</h3>
<p>The forces are balanced, so they should close back on themselves like this:</p>
<p class="center"><img src="images/force-ex2c.svg" alt="force beam strut" /></p>
<p class="center">We can use <a href="../algebra/trig-solving-triangles.html">trigonometry</a> to solve it.<br>
Because it is a <b>right-angled triangle</b>, <a href="../algebra/sohcahtoa.html">SOHCAHTOA</a> will help.</p>
<p>For the <b>Beam</b>, we know the Adjacent, we want to know the Opposite,&nbsp;and &quot;TOA&quot; tells us to use Tangent:</p>
<p class="center larger">tan(60&deg;) = Beam/785 N</p>
<p class="center larger">Beam/785 N = tan(60&deg;)</p>
<p class="center larger">Beam = tan(60&deg;) &times; 785 N</p>
<p class="center larger">Beam = 1.732... &times; 785 N = 1360 N</p>
<p>For the <b>Strut</b>, we know the Adjacent, we want to know the Hypotenuse,&nbsp;and &quot;CAH&quot;&nbsp;tells us to use Cosine:</p>
<p class="center larger">cos(60&deg;) = 785 N / Strut</p>
<p class="center larger">Strut &times; cos(60&deg;) = 785 N</p>
<p class="center larger">Strut = 785 N / cos(60&deg;)</p>
<p class="center larger">Strut = 785 N / 0.5 = 1570 N</p>
<p>Solved:</p>
<p class="center"><img src="images/force-ex2d.svg" alt="force beam 1360 strut 1570" /></p>
<p>Interesting how much force is on the beam and strut compared to the weight being supported!</p>
</div>
<h2>Torque (or Moment)</h2>
<p>What if the beam is just stuck into the wall (called a cantilever)?</p>
<p><img src="images/force-ex5a.svg" alt="force man cantilever" /></p>
<p>There is no supporting strut, so what happens to the forces?</p>
<p>The Free Body Diagram looks like this:</p>
<p class="center"><img src="images/force-ex5b.svg" alt="force cantilever free body diagram" /></p>
<p>The upwards force <b>R</b> balances the downwards <b>Weight</b>.</p>
<p>With only those two forces the beam will spin like a propeller! But there is also a &quot;turning effect&quot; <b>M</b> called <b>Moment</b> (or <b>Torque</b>) that balances it out:</p>
<p class="words"><b>Moment</b>: Force times the Distance at right angles.</p>
<p>We know the <b>Weight</b> is 785 N, and we also need to know the <b>distance at right angles</b>, which in this case is 3.2 m.</p>
<p class="center larger"><b>M</b> = 785 N x 3.2 m = <b>2512 Nm</b></p>
<p>And that moment is what stops the beam from rotating.</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/moment-fishing-rod.jpg" width="180" height="235" alt="moment on fishing rod" /></p>
<p>&nbsp;</p>
<p>You can feel moment when holding onto a fishing rod.</p>
<p>As well as holding up its weight you have to stop it from rotating downwards.</p>
<div style="clear:both"></div>
<h2>Friction</h2>
<div style="clear:both"></div>
<div class="example">
<h3>Box on a Ramp</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/force-ex4a.gif" width="200" height="255" alt="forces box on 20 degress incline: W, f, R" /></p>
<p>The box weighs 100 kg.</p>
<p>The friction force is enough to keep it where it is.</p>
<p>The reaction force R is at right angles to the ramp.</p>
<p>The box is not accelerating, so the forces are in balance:</p>
<p class="center"><img src="images/force-ex4b.gif" width="94" height="167" alt="force diagram: W, f, R" /></p>
<p>The 100 kg mass creates a downward force due to Gravity:</p>
<p class="so"><b>W</b> = 100 kg &times; 9.81 m/s<sup>2</sup> = 981 N</p>
<p>&nbsp;</p>
<p>We can use <span class="center"><a href="../algebra/sohcahtoa.html">SOHCAHTOA</a> to solve the triangle.</span></p>
<p>Friction <b>f</b>:</p>
<p class="so">sin(20&deg;) = <b>f</b>/981 N</p>
<p class="so"><b>f</b> = sin(20&deg;) &times; 981 N = 336 N</p>
<p>Reaction <b>N</b>:</p>
<p class="so">cos(20&deg;) = R/981 N</p>
<p class="so"><b>R</b> = cos(20&deg;) &times; 981 N&nbsp;= 922 N</p>
<p>And we get:</p>
<p class="center"><img src="images/force-ex4c.gif" width="193" height="162" alt="force diagram: W=981N, f=336N, R=922N" /></p>
</div>
<h2>Tips for Drawing Free Body Diagrams</h2>
<ul>
<li>Draw as simply as possible. A box is often good enough.</li>
<li>Forces point in the <b>direction they act on the body</b></li>
<li>straight arrows for <b>forces</b></li>
<li>curved arrows for <b>moments</b></li>
</ul>
<h2>Sam and Alex Pull a Box</h2>
<p>The calculations can sometimes be easier when we turn <b>magnitude and direction</b> into <b>x and y</b>:</p>
<table style="border: 0; margin:auto;">
<tr>
<td align="center"><img src="../algebra/images/vector-polar.svg" alt="vector polar" /></td>
<td align="center">&lt;=&gt;</td>
<td align="center"><img src="../algebra/images/vector-cartesian.svg" alt="vector cartesian" /></td>
</tr>
<tr>
<td align="center">Vector <b>a</b> in Polar<br>
Coordinates</td>
<td align="center">&nbsp;</td>
<td align="center">Vector <b>a</b> in Cartesian<br>
Coordinates</td>
</tr>
</table>
<p>You can read how to convert them at <a href="../polar-cartesian-coordinates.html">Polar and Cartesian Coordinates</a>, but here is a quick summary:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tr>
<th>From Polar Coordinates (r,<i>&theta;</i>)<br>
to Cartesian Coordinates (x,y)</th>
<td>&nbsp;</td>
<th><span class="Larger">From Cartesian Coordinates (x,y)<br>
to Polar Coordinates (r,&theta;)</span></th>
</tr>
<tr>
<td><ul>
<li><b>x = r</b> &times; <b>cos( <i>&theta;</i> )</b></li>
<li><b>y = r</b> &times; <b>sin(<i> &theta;</i> )</b></li>
</ul></td>
<td>&nbsp;</td>
<td><ul>
<li><b>r = &radic; ( x<sup>2</sup> + y<sup>2 </sup>)</b></li>
<li><b><i>&theta;</i> = tan<sup>-1 </sup>( y / x )</b></li>
</ul></td>
</tr>
</table>
</div>
<p>Let's use them!</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="../algebra/images/vector-ex1c.svg" alt="vector example: 2 people pulling box" /></p>
<h3>Example: Pulling a Box</h3>
<p>Sam and Alex are pulling a box <i>(viewed from above)</i>:</p>
<ul>
<li>Sam pulls with 200 Newtons of force at 60&deg;</li>
<li>Alex pulls with 120 Newtons of force at 45&deg; as shown</li>
</ul>
<p>What is the combined <a href="force.html">force</a>, and its direction?</p>
<p>Let us add the two vectors head to tail:</p>
<p class="center"><img src="../algebra/images/vector-ex1a.gif" width="176" height="146" alt="vector example: 200 at 60, 120 at 45" /></p>
<p>First convert from polar to Cartesian (to 2 decimals):</p>
<p>Sam's Vector:</p>
<ul>
<li><b>x = r &times; cos( <i>&theta;</i> ) = 200 &times; cos(60&deg;) = 200 &times; 0.5 = 100</b></li>
<li><b>y = r &times; sin(<i> &theta;</i> ) = 200 &times; sin(60&deg;) = 200 &times; 0.8660 = 173.21</b></li>
</ul>
<p>Alex's Vector:</p>
<ul>
<li><b>x = r &times; cos( <i>&theta;</i> ) = 120 &times; cos(&minus;45&deg;) = 120 &times; 0.7071 = 84.85</b></li>
<li><b>y = r &times; sin(<i> &theta;</i> ) = 120 &times; sin(&minus;45&deg;) = 120 &times; -0.7071 = &minus;84.85</b></li>
</ul>
<p>Now we have:</p>
<p class="center"><img src="../algebra/images/vector-ex1b.gif" width="190" height="137" alt="vector example: force components" /></p>
<p>Add them:</p>
<p class="center larger">(100, 173.21) + (84.85, &minus;84.85) = (184.85, 88.36)</p>
<p>That answer is valid, but let's convert back to polar as the question was in polar:</p>
<ul>
<li><b>r = &radic; ( x<sup>2</sup> + y<sup>2 </sup>) = &radic; ( 184.85<sup>2</sup> + 88.36<sup>2 </sup>)</b> = <b> 204.88</b></li>
<li><b><i>&theta;</i> = tan<sup>-1 </sup>( y / x ) = tan<sup>-1 </sup>( 88.36 / 184.85 ) = 25.5&deg;</b></li>
</ul>
<p class="center"><span class="large">And we have this (rounded) result:</span><br>
<img src="../algebra/images/vector-ex1d.gif" width="138" height="140" alt="vector example: forces in trianle" /></p>
<p class="center"><span class="large">And it looks like this for Sam and Alex:</span><br>
<img src="../algebra/images/vector-ex1e.svg" alt="vector example: combined forces" /></p>
<p>They might get a better result if they were shoulder-to-shoulder!</p>
</div>
<p>&nbsp;</p>
<div class="questions">
<script>
getQ(11933, 11934, 11935, 11936, 11937, 11938, 9313, 9314, 9315, 9316);
</script>&nbsp; </div>
<div class="related">
<a href="force.html">Force</a>
<a href="../measure/metric-acceleration.html">Acceleration</a>
<a href="index.html">Physics Index</a>
</div>
<!-- #EndEditable -->
</div>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body>
<!-- Mirrored from www.mathsisfun.com/physics/force-calculations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:42 GMT -->
</html>