Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

412 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:55 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Limits (An Introduction)</title>
<script src="images/limit-runner.js" type="text/javascript"></script>
<link rel="stylesheet" type="text/css" href="../stylejs.css">
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Limits <i>(An Introduction)</i></h1>
<h2>Approaching ...</h2> Sometimes we can't work something out directly ... but we <b>can</b> see what it should be as we get closer and closer!
<div class="example">
<h3>Example:</h3>
<p class="center larger"><span class="intbl">
<em>(x<sup>2</sup> 1)</em>
<strong>(x 1)</strong>
</span></p>
<p>Let's work it out for x=1:</p>
<p class="center larger"><span class="intbl">
<em>(1<sup>2 </sup> 1)</em>
<strong>(1 1)</strong>
</span> = <span class="intbl">
<em>(1 1)</em>
<strong>(1 1)</strong>
</span> = <span class="intbl">
<em>0</em>
<strong>0</strong>
</span></p>
</div>
<p>Now 0/0 is a difficulty! We don't really know the value of 0/0 (it is "indeterminate"), so we need another way of answering this.</p>
<p>So instead of trying to work it out for x=1 let's try <b>approaching</b> it closer and closer:</p>
<div class="example">
<h3>Example Continued:</h3>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td class="larger">x</td>
<td style="width:30px;">&nbsp;</td>
<td class="larger"><span class="intbl">
<em>(x<sup>2</sup> 1)</em>
<strong>(x 1)</strong>
</span></td>
</tr>
<tr style="text-align:right;">
<td>0.5</td>
<td>&nbsp;</td>
<td>1.50000</td>
</tr>
<tr style="text-align:right;">
<td>0.9</td>
<td>&nbsp;</td>
<td>1.90000</td>
</tr>
<tr style="text-align:right;">
<td>0.99</td>
<td>&nbsp;</td>
<td>1.99000</td>
</tr>
<tr style="text-align:right;">
<td>0.999</td>
<td>&nbsp;</td>
<td>1.99900</td>
</tr>
<tr style="text-align:right;">
<td>0.9999</td>
<td>&nbsp;</td>
<td>1.99990</td>
</tr>
<tr style="text-align:right;">
<td>0.99999</td>
<td>&nbsp;</td>
<td>1.99999</td>
</tr>
<tr style="text-align:right;">
<td>...</td>
<td>&nbsp;</td>
<td>...</td>
</tr>
</tbody></table>
</div>
<p>Now we see that as x gets close to 1, then <span class="intbl">
<em>(x<sup>2</sup>1)</em>
<strong>(x1)</strong>
</span> gets <b>close to 2</b></p>
</div>
<p>We are now faced with an interesting situation:</p>
<ul>
<li>When x=1 we don't know the answer (it is <b>indeterminate</b>)</li>
<li>But we can see that it is <b>going to be 2</b></li>
</ul>
<p>We want to give the answer "2" but can't, so instead mathematicians say exactly what is going on by using the special word "limit".</p>
<p class="center larger">The <b>limit</b> of <span class="intbl">
<em>(x<sup>2</sup>1)</em>
<strong>(x1)</strong>
</span> as x approaches 1 is<b> 2</b></p>
<p>And it is written in symbols as:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→1</strong></span><span class="intbl"><em>x<sup>2</sup>1</em><strong>x1</strong></span> = 2</p>
<!-- limx->1 x^2~&minus;1/x&minus;1 = 2 -->
<p>So it is a special way of saying,<i> "ignoring what happens when we get there, but as we get closer and closer the answer gets closer and closer to 2"</i></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">
<p>As a graph it looks like this:</p>
<p>So, in truth, we <b>cannot say what the value at x=1 is.</b></p>
<p>But we <b>can</b> say that as we approach 1, <b>the limit is 2.</b></p>
</td>
<td style="text-align:right;">&nbsp;</td>
<td><img src="images/graph-x2-1-x-1.svg" alt="graph hole"></td>
</tr>
</tbody></table>
<h2>Test Both Sides!</h2>
<div style="float:left; margin: 0 10px 5px 0;">
<script>
limitrunnerMain();
</script>
</div>
<p>It&nbsp;is&nbsp;like&nbsp;running up a hill and then finding the path<b> is magically "not there"...</b></p>
<p>... but if we only check one side, who knows what happens?</p>
<p>So we need to test it <b>from both directions</b> to be sure where it "should be"!</p>
<div style="clear:both"></div>
<div class="example">
<h3>Example Continued</h3>
<p>So, let's try from the other side:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td class="larger">x</td>
<td>&nbsp;</td>
<td class="larger"><span class="intbl">
<em>(x<sup>2</sup> 1)</em>
<strong>(x 1)</strong>
</span></td>
</tr>
<tr style="text-align:right;">
<td>1.5</td>
<td>&nbsp;</td>
<td>2.50000</td>
</tr>
<tr style="text-align:right;">
<td>1.1</td>
<td>&nbsp;</td>
<td>2.10000</td>
</tr>
<tr style="text-align:right;">
<td>1.01</td>
<td>&nbsp;</td>
<td>2.01000</td>
</tr>
<tr style="text-align:right;">
<td>1.001</td>
<td>&nbsp;</td>
<td>2.00100</td>
</tr>
<tr style="text-align:right;">
<td>1.0001</td>
<td>&nbsp;</td>
<td>2.00010</td>
</tr>
<tr style="text-align:right;">
<td>1.00001</td>
<td>&nbsp;</td>
<td>2.00001</td>
</tr>
<tr style="text-align:right;">
<td>...</td>
<td>&nbsp;</td>
<td>...</td>
</tr>
</tbody></table>
</div>
<p>Also heading for 2, so that's OK</p>
</div>
<h2>When it is different from different sides</h2>
<p style="float:right; margin: 0 0 5px 10px; border: 1px solid blue;"><img src="images/discontinuous-function.svg" alt="discontinuous function"></p>
<p>How about a function <b>f(x)</b> with a "break" in it like this:</p>
<p class="center large">The limit does not exist at "a"</p>
<p><b>We can't say what the value at "a" is</b>, because there are two competing answers:</p>
<ul>
<li>3.8 from the left, and</li>
<li>1.3 from the right</li>
</ul>
<p>But we <b>can</b> use the special "" or "+" signs (as shown) to define one sided limits:</p>
<ul>
<li>the <b>left-hand</b> limit () is 3.8</li>
<li>the <b>right-hand</b> limit (+) is 1.3</li>
</ul>
<p>And the ordinary limit <b>"does not exist"</b></p>
<h2>Are limits only for difficult functions?</h2>
<p>Limits can be used even when we <b>know the value when we get there</b>! Nobody said they are only for difficult functions.</p>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="lim"><em>lim</em><strong>x→10</strong></span><span class="intbl"><em>x</em><strong>2</strong></span> = 5</p>
<!-- limx->10 x/2 = 5 -->
<p>We know perfectly well that 10/2 = 5, but limits can still be used (if we want!)</p>
</div>
<h2>Approaching Infinity</h2>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../sets/images/infinity.svg" alt="infinity"></p>
<p><a href="../numbers/infinity.html">Infinity</a> is a very special idea.
We know we can't reach it, but we can still try to work out the value of
functions that have infinity in them.</p>
<h3>Let's start with an interesting example.</h3>
<div class="simple">
<table align="center" width="400" border="0">
<tbody>
<tr>
<td class="larger">Question: What is the value of <span class="intbl"><em>1</em><strong><span class="times"></span></strong>
</span> ?</td>
</tr>
</tbody></table><br>
<table align="center" width="400" border="0">
<tbody>
<tr>
<td class="large">Answer: We don't know!</td>
</tr>
</tbody></table>
</div>
<p class="center large">&nbsp;</p>
<h3>Why Don't We Know?</h3>
<p>The simplest reason is that Infinity is not a number, it is an idea.</p>
<p>So <span class="intbl"><em>1</em><strong><span class="times"></span></strong>
</span> is a bit like saying <span class="intbl">
<em>1</em>
<strong>beauty</strong>
</span> or <span class="intbl">
<em>1</em>
<strong>tall</strong>
</span>.</p>
<p>Maybe we could say that <span class="intbl"><em>1</em><strong><span class="times"></span></strong>
</span>= 0, ... but that is a problem too, because if we divide 1 into infinite pieces and they end up 0 each, what happened to the 1?</p>
<p class="center">In fact <span class="intbl"><em>1</em><strong><span class="times"></span></strong>
</span> is known to be <b>undefined</b>.</p>
<h3>But We Can Approach It!</h3>
<p>So instead of trying to work it out for infinity (because we can't get a sensible answer), let's try larger and larger values of x:</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../sets/images/function-reciprocal-pos.svg" alt="graph 1/x"></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td style="width:150px;"><b>x</b></td>
<td style="width:150px;"><b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b></td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">1</td>
<td style="width:150px;">1.00000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">2</td>
<td style="width:150px;">0.50000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">4</td>
<td style="width:150px;">0.25000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">10</td>
<td style="width:150px;">0.10000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">100</td>
<td style="width:150px;">0.01000</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">1,000</td>
<td style="width:150px;">0.00100</td>
</tr>
<tr style="text-align:right;">
<td style="width:150px;">10,000</td>
<td style="width:150px;">0.00010</td>
</tr>
</tbody></table>
<p>Now we can see that as x gets larger, <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> tends towards 0</p>
<p>We are now faced with an interesting situation:</p>
<ul>
<li>We can't say what happens when x gets to infinity</li>
<li>But we can see that <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> is <b>going towards 0</b></li>
</ul>
<p>We want to give the answer "0" but can't, so instead mathematicians say exactly what is going on by using the special word "limit".</p>
<p class="center larger">The <b>limit</b> of <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> as x approaches Infinity is<b> 0</b></p>
<p>And write it like this:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→∞</strong></span><span class="intbl"><em>1</em><strong>x</strong></span> = 0</p>
<!-- limx->INF 1/x = 0 -->
<p>In other words:</p>
<p class="center large">As x approaches infinity, then <b><span class="intbl">
<em>1</em>
<strong>x</strong>
</span></b> approaches 0</p>
<p class="center large">&nbsp;</p>
<div class="def">
<p class="center large"><i>When you see "limit", think "approaching"</i></p>
</div>
<p class="center large">&nbsp;</p>
<p>It is a mathematical way of saying <i>"we are not talking about when x=<span class="times"></span>, but we know as x gets bigger, the answer gets closer and closer to <b>0</b>"</i>.</p>
<p class="center">Read more at <a href="limits-infinity.html">Limits to Infinity</a>.</p>
<h2>Solving!</h2>
<p>We have been a little lazy so far, and just said that a limit equals some value because it <b>looked like it was going to</b>.</p>
<p>That is not really good enough! Read more at <a href="limits-evaluating.html">Evaluating Limits</a>.</p>
<p>&nbsp;</p>
<div class="questions">
<script>
getQ(6760, 6761, 6762, 6763, 6764, 6765, 6766, 6767, 6768, 6769);
</script>&nbsp; </div>
<div class="related">
<a href="limits-evaluating.html">Evaluating Limits</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:56 GMT -->
</html>