Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

192 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-partial.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:02 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Partial Derivatives</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Partial Derivatives</h1>
<p>&nbsp;</p>
<p>A Partial Derivative is a <a href="derivatives-introduction.html">derivative</a> where we hold some variables constant. Like in this example:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/partial-derivative.gif" alt="partial derivative on surface" height="339" width="300"></p>
<h3>Example: a function for a surface that depends on two variables <b>x</b> and <b>y</b></h3>
<p>&nbsp;</p>
<p>When we find the slope in the <b>x</b> direction (while keeping <b>y</b> fixed) we have found a partial derivative.</p>
<p>&nbsp;</p>
<p>Or we can find the slope in the <b>y</b> direction (while keeping <b>x</b> fixed).</p>
</div>
<p>&nbsp;</p>
<p>Let's first think about a function of <b>one variable</b> (x):</p>
<p class="center large">f(x) = x<sup>2</sup></p>
<p>We can find its <a href="derivatives-rules.html">derivative</a> using the <a href="power-rule.html">Power Rule</a>:</p>
<p class="center large">f(x) = 2x</p>
<p class="larger">But what about a function of <b>two variables</b> (x and y):</p>
<p class="center large">f(x, y) = x<sup>2</sup> + y<sup>3</sup></p>
<p>We can find its <b>partial</b> derivative <b>with respect to x</b> when we treat <b>y as a constant</b> (imagine y is a number like 7 or something):</p>
<p class="center large">f<sub>x</sub> = 2x + 0 = 2x</p>
<div class="center80">
<p><i>Explanation:</i></p>
<ul>
<li><i>the derivative of x<sup>2</sup> (with respect to x) is 2x</i></li>
<li><i> we <b>treat y as a constant</b>, so y<sup>3</sup> is also a constant (imagine y=7, then 7<sup>3</sup>=343 is also a constant), and the derivative of a constant is 0</i></li>
</ul>
</div>
<p>To find the partial derivative <b>with respect to y</b>, we treat <b>x as a constant</b>:</p>
<p class="center large">f<sub>y</sub> = 0 + 3y<sup>2</sup> = 3y<sup>2</sup></p>
<div class="center80">
<p><i>Explanation:</i></p>
<ul>
<li><i>we now <b>treat x as a constant</b>, so x<sup>2</sup> is also a constant, and the derivative of a constant is 0</i></li>
<li><i>the derivative of y<sup>3</sup> (with respect to y) is 3y<sup>2</sup></i></li>
</ul>
</div>
<p>&nbsp;</p>
<p>That is all there is to it. Just remember to treat <b>all other variables as if they are constants</b>.</p>
<p>&nbsp;</p>
<h3>Holding A Variable Constant</h3>
<p>So what does "holding a variable constant" look like?</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="../geometry/images/cylinder-dimensions.svg" alt="Cylinder Dimensions"></p>
<h3>Example: the volume of a cylinder is V = <span class="times">π</span> r<sup>2</sup> h</h3>
<p>We can write that in "multi variable" form as</p>
<p class="center large">f(r, h) = <span class="times">π</span> r<sup>2</sup> h</p>
<p>&nbsp;</p>
<p>For the partial derivative with respect to r we hold <b>h constant</b>, and r&nbsp;changes:</p>
<div style="clear:both"></div>
<p class="center"><img src="images/cylinder-r-changes.svg" alt="Cylinder with r changing"></p>
<p class="center large">f<sub>r</sub> = <span class="times">π</span> (2r) h = 2<span class="times">π</span>rh</p>
<p class="center"><i>(The derivative of r<sup>2</sup> with respect to r is 2r, and <span class="times">π</span> and h are constants)</i></p>
<p>It says "as only the radius changes (by the tiniest amount), the volume changes by 2<span class="times">π</span>rh"</p>
<p>It is like we add a skin with a circle's circumference (2<span class="times">π</span>r) and a height of h.</p>
<p>&nbsp;</p>
<p>For the partial derivative with respect to h we hold <b>r constant</b>:</p>
<p class="center"><img src="images/cylinder-h-changes.svg" alt="Cylinder with r changing"></p>
<p class="center large">f<sub>h</sub> = <span class="times"> π</span> r<sup>2 </sup>(1)= <span class="times"> π</span>r<sup>2</sup></p>
<p class="center"><i>(<span class="times">π</span> and r<sup>2</sup> are constants, and the derivative of h with respect to h is 1)</i></p>
<p>It says "as only the height changes (by the tiniest amount), the volume changes by <span class="times">π</span>r<sup>2</sup>"</p>
<p>It is like we add the thinnest disk on top with a circle's area of <span class="times">π</span>r<sup>2</sup>.</p>
</div>
<p>Let's see another example.</p>
<div class="example">
<h3>Example: The surface area of a square prism.</h3>
<p class="center"><img src="images/partial-derivative-box.svg" alt="Cylinder with r changing"></p>
<p>The surface includes the top and bottom with areas of <b>x<sup>2</sup></b> each, and 4 sides of area <b>xy</b> each:</p>
<p class="center large">f(x, y) = 2x<sup>2</sup> + 4xy</p>
<p class="so">f<span class="center large"><sub>x</sub></span> = 4x + 4y</p>
<p class="so">f<span class="center large"><sub>y</sub></span> = 0 + 4x = 4x</p>
</div>
<h3>Three or More Variables</h3>
<p>We can have 3 or more variables. Just find the partial derivative of each variable in turn while&nbsp;treating<b> all other variables as constants</b>.</p>
<div class="example">
<h3>Example: The volume of a cube with a square prism cut out from it.</h3>
<p class="center"><img src="images/partial-derivative-box-cube.svg" alt="Cylinder with r changing"></p>
<p class="center large">f(x, y, z) = z<sup>3</sup> x<sup>2</sup>y</p>
<p class="so">f<sub>x</sub> = 0 2xy = 2xy</p>
<p class="so">f<sub>y</sub> = 0 x<sup>2</sup> = x<sup>2</sup></p>
<p class="so">f<sub>z</sub> = 3z<sup>2</sup> 0 = 3z<sup>2</sup></p>
</div>
<p>When there are many x's and y's it can get confusing, so a mental trick is to change the "constant" variables into letters like "c" or "k" that <i>look</i> like constants.</p>
<div class="example">
<h3>Example: f(x, y) = y<sup>3</sup>sin(x) + x<sup>2</sup>tan(y)</h3>
<p>It has x's and y's all over the place! So let us try the letter change trick.</p>
<p>With respect to x we can change "y" to "k":</p>
<p>f(x, y) = <span class="hilite">k</span><sup>3</sup>sin(x) + x<sup>2</sup>tan(<span class="hilite">k</span>)</p>
<p class="so">f<sub>x</sub> = k<sup>3</sup>cos(x) + 2x tan(k)</p>
<p>But remember to turn it back again!</p>
<p class="so">f<sub>x</sub> = y<sup>3</sup>cos(x) + 2x tan(y)</p>
<p>Likewise with respect to y we turn the "x" into a "k":</p>
<p>f(x, y) = y<sup>3</sup>sin(<span class="hilite">k</span>) + <span class="hilite">k</span><sup>2</sup>tan(y)</p>
<p class="so">f<sub>y</sub> = 3y<sup>2</sup>sin(k) + k<sup>2</sup>sec<sup>2</sup>(y)</p>
<p class="so">f<sub>y</sub> = 3y<sup>2</sup>sin(x) + x<sup>2</sup>sec<sup>2</sup>(y)</p>
<p>But only do this if you have trouble remembering, as it is a little extra work.</p>
</div>
<p>&nbsp;</p>
<div class="words">
<p><b>Notation</b>: we have used <b>f<sub>x</sub></b> to mean "the partial derivative with respect to x", but another very common notation is to use a funny backwards d (∂) like this:</p>
<p class="center large"><span class="intbl"><em>∂f</em><strong>∂x</strong></span> = 2x</p>
<p>Which is the same as:</p>
<p class="center large">f<sub>x</sub> = 2x</p>
<p><span class="larger"></span> is called "del" or "dee" or "curly dee"</p>
<p>So <span class="intbl">
<em>∂f</em>
<strong>∂x</strong></span>&nbsp;can be said "del&nbsp;f del x"</p>
</div>
<div class="example">
<h3>Example: find the partial derivatives of&nbsp;<b>f(x, y, z) = x<sup>4</sup> 3xyz</b> using "curly dee" notation</h3>
<p>f(x, y, z) = x<sup>4</sup> 3xyz</p>
<p class="so"><span class="intbl"><em>∂f</em><strong>∂x</strong></span> = 4x<sup>3</sup> 3yz</p>
<p class="so"><span class="intbl"><em>∂f</em><strong>∂y</strong></span> = 3xz</p>
<p class="so"><span class="intbl"><em>∂f</em><strong>∂z</strong></span> = 3xy</p>
</div>
<p>You might prefer that notation, it certainly looks cool.</p>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(13373, 13374, 13375, 13376, 13377, 13378, 13379, 13380, 13381, 13382, 13383);</script>&nbsp;
</div>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-partial.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:03 GMT -->
</html>