Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

469 lines
19 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-four-quadrants.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:10 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Sine, Cosine and Tangent in Four Quadrants</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Sine, Cosine and Tangent in Four Quadrants</h1>
<h2>Sine, Cosine and Tangent</h2>
<p>The three main functions in trigonometry are <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a>.</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" height="190" width="326"></p>
<p>They are easy to calculate:</p>
<p class="center"><b>Divide&nbsp;the&nbsp;length of one side of a<br>
right angled triangle by another side</b></p>
<p class="center"><br>
... but we must know which sides!</p>
<div style="clear:both"></div>
<p align="left">For an angle <b><i>θ</i></b>, the functions are calculated this way:</p>
<div class="simple">
<table align="center" cellpadding="5" border="0">
<tbody>
<tr>
<td>
<div align="right">Sine Function:&nbsp;</div></td>
<td><b>sin(<i>θ</i>) = Opposite / Hypotenuse</b></td>
</tr>
<tr>
<td>
<div align="right">Cosine Function:&nbsp;</div></td>
<td><b>cos(<i>θ</i>) = Adjacent / Hypotenuse</b></td>
</tr>
<tr>
<td>
<div align="right">Tangent Function:&nbsp;</div></td>
<td><b>tan(<i>θ</i>) = Opposite / Adjacent</b></td>
</tr>
</tbody></table><br>
</div>
<div class="example">
<h3>Example: What is the sine of 35°?</h3>
<table width="100%" border="0">
<tbody>
<tr>
<td><img src="../geometry/images/triangle-28-40-49.gif" alt="triangle 2.8 4.0 4.9" height="117" width="159"></td>
<td>
<p>Using this triangle (lengths are only to one decimal place):</p>
<p class="larger">sin(35°) = Opposite / Hypotenuse = 2.8/4.9 = <b>0.57...</b></p></td>
</tr>
</tbody></table>
</div>
<h2>Cartesian Coordinates</h2>
<p>Using <a href="../data/cartesian-coordinates.html">Cartesian Coordinates</a> we mark a point on a graph by <b>how far along</b> and <b>how far up</b> it is:</p>
<p class="center"><img src="../geometry/images/coordinates-cartesian.svg" alt="graph with point (12,5)" height="232" width="348"><br>
<span class="larger">The point <b>(12,5)</b> is 12 units along, and 5 units up.</span></p><p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../geometry/images/cartesian-quadrants.svg" alt="Quadrants" height="191" width="250"></p>
<h2>Four Quadrants</h2>
<p>When we include <b>negative values</b>, the x and y axes divide the space up into 4 pieces:</p>
<p class="center"><b>Quadrants I, II, III</b> and<b> IV</b></p>
<p><i>(They are numbered in a counter-clockwise direction)</i></p>
<ul>
<li>In <b>Quadrant I</b> both x and y are positive,</li>
<li>in <b>Quadrant II</b> <span style="color: #ff0000;">x is negative</span> (y is still positive),</li>
<li>in <b>Quadrant III</b> <span style="color: #ff0000;">both x and y are negative</span>, and</li>
<li>in <b>Quadrant IV</b> x is positive again, and <span style="color: #ff0000;">y is negative</span>.</li>
</ul>
<p>Like this:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/trig-quadrants-signs.svg" alt="Quadrant Signs" height="276" width="276"></p>
<div class="beach" style="min-width:300px;">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>Quadrant</th>
<th>X<br>
(horizontal)</th>
<th>Y<br>
(vertical)</th>
<th>Example</th>
</tr>
<tr style="text-align:center;">
<td class="larger"><b>I</b></td>
<td>Positive</td>
<td>Positive</td>
<td>(3,2)</td>
</tr>
<tr style="text-align:center;">
<td class="larger"><b>II</b></td>
<td><i>Negative</i></td>
<td>Positive</td>
<td>&nbsp;(5,4)</td>
</tr>
<tr style="text-align:center;">
<td class="larger"><b>III</b></td>
<td><i>Negative</i></td>
<td><i>Negative</i></td>
<td>(2,1)</td>
</tr>
<tr style="text-align:center;">
<td class="larger"><b>IV</b></td>
<td>Positive</td>
<td><i>Negative</i></td>
<td>&nbsp;(4,3)</td>
</tr>
</tbody></table>
</div>
<div style="clear:both"></div>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="../data/images/cartesian-coordinates.gif" alt="cartesian coordinates" height="286" width="284"></p>
<p>Example: The point "C" (2,1) is 2 units along in the negative direction, and 1 unit down (i.e. negative direction).</p>
<p>Both x and y are negative, so that point is in "Quadrant III"</p>
</div>
<h2>Reference Angle</h2>
<p>Angles can be more than 90º</p>
<p>But we can bring them back below 90º using the x-axis as the reference.</p>
<p class="center"><i>Think "reference" means "refer x"</i></p>
<p>The simplest method is to do a sketch!</p>
<div class="example">
<h3>Example: 160º</h3>
<p>Start at the positive x axis and rotate 160º</p>
<p class="center"><img src="images/trig-quadrant2-ref-ex.svg" alt="triangle quadrant example" height="167" width="251"><br>
Then find the angle to the nearest part of the x-axis,<br>
in this case 20º</p><br>
<p>The reference angle for 160º is <b>20º</b></p>
</div>
<p>Here we see four examples with a reference angle of 30º:</p>
<p class="center"><img src="images/trig-reference-30.svg" alt="30 degree reference angles" height="208" width="301"></p>
<p>Instead of a sketch you can use these rules:</p>
<table align="center" cellspacing="2" cellpadding="2" border="1">
<tbody>
<tr>
<td style="text-align: center;">Quadrant</td>
<td style="text-align: center;">Reference Angle</td>
</tr>
<tr>
<td style="text-align: center;">I</td>
<td style="text-align: center;">θ</td></tr>
<tr>
<td style="text-align: center;">II</td>
<td style="text-align: center;">180º θ</td>
</tr>
<tr>
<td style="text-align: center;">III</td>
<td style="text-align: center;">θ 180º</td>
</tr>
<tr>
<td style="text-align: center;">IV</td>
<td style="text-align: center;">360º θ</td>
</tr>
</tbody>
</table>
<h2>Sine, Cosine and Tangent in the
Four Quadrants</h2>
<p>Now let us look at the details of a <b>30° right triangle</b> in each of the 4 Quadrants.</p>
<p>In <span class="larger">Quadrant I</span> everything is normal, and <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a> are all positive:</p>
<div class="example">
<h3>Example: The sine, cosine and tangent of 30°</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/trig-quadrant1-ex.svg" alt="triangle 30 quadrant I" height="171" width="249"></p>
<table align="center" cellpadding="3" border="0">
<tbody>
<tr>
<td>
<div class="center"><b>Sine</b></div></td>
<td nowrap="nowrap">
<div class="center">sin(30°) = 1 / 2 = 0.5</div></td>
</tr>
<tr>
<td>
<div class="center"><b>Cosine</b></div></td>
<td nowrap="nowrap">
<div class="center">cos(30°) = 1.732 / 2 = 0.866</div></td>
</tr>
<tr>
<td>
<div class="center"><b>Tangent</b></div></td>
<td nowrap="nowrap">
<div class="center">tan(30°) = 1 / 1.732 = 0.577</div></td>
</tr>
</tbody></table>
<div style="clear:both"></div>
</div>
<p>&nbsp;</p>
<p>But in <span class="larger">Quadrant II</span>, the <b>x direction is negative</b>, and cosine and tangent become negative:</p>
<div class="example">
<h3>Example: The sine, cosine and tangent of 150°</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/trig-quadrant2-ex.svg" alt="triangle 30 quadrant I" height="171" width="249"></p>
<table align="center" cellpadding="3" border="0">
<tbody>
<tr>
<td>
<div class="center"><b>Sine</b></div></td>
<td nowrap="nowrap">
<div class="center">sin(150°) = 1 / 2 = 0.5</div></td>
</tr>
<tr>
<td>
<div class="center"><b>Cosine</b></div></td>
<td nowrap="nowrap">
<div class="center">cos(150°) = <span class="hilite">1.732</span> / 2 = <span class="hilite">0.866</span></div></td>
</tr>
<tr>
<td>
<div class="center"><b>Tangent</b></div></td>
<td nowrap="nowrap">
<div class="center">tan(150°) = 1 / <span class="hilite">1.732</span> = <span class="hilite">0.577</span></div></td>
</tr>
</tbody></table>
<div style="clear:both"></div>
</div>
<p>&nbsp;</p>
<p><span style="font-weight: bold;"></span>In <span class="larger">Quadrant III</span>, sine and cosine are negative:</p>
<div class="example">
<h3>Example: The sine, cosine and tangent of 210°</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/trig-quadrant3-ex.svg" alt="triangle 30 quadrant I" height="171" width="249"></p>
<table align="center" cellpadding="3" border="0">
<tbody>
<tr>
<td>
<div class="center"><b>Sine</b></div></td>
<td nowrap="nowrap">
<div class="center">sin(210°) = <span class="hilite">1</span> / 2 = <span class="hilite">0.5</span></div></td>
</tr>
<tr>
<td>
<div class="center"><b>Cosine</b></div></td>
<td nowrap="nowrap">
<div class="center">cos(210°) = <span class="hilite">1.732</span> / 2 = <span class="hilite">0.866</span></div></td>
</tr>
<tr>
<td>
<div class="center"><b>Tangent</b></div></td>
<td nowrap="nowrap">
<div class="center">tan(210°) = <span class="hilite">1 / 1.732</span> = 0.577</div></td>
</tr>
</tbody></table>
<p>Note: Tangent is <b>positive</b> because dividing a negative by a negative gives a positive.</p>
<div style="clear:both"></div>
</div>
<p>&nbsp;</p>
<p><span style="font-weight: bold;"></span>In <span class="larger">Quadrant IV</span>, sine and tangent are negative:</p>
<div class="example">
<h3>Example: The sine, cosine and tangent of 330°</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/trig-quadrant4-ex.svg" alt="triangle 30 quadrant I" height="171" width="249"></p>
<table align="center" cellpadding="3" border="0">
<tbody>
<tr>
<td>
<div class="center"><b>Sine</b></div></td>
<td nowrap="nowrap">
<div class="center">sin(330°) = <span class="hilite">1</span> / 2 = <span class="hilite">0.5</span></div></td>
</tr>
<tr>
<td>
<div class="center"><b>Cosine</b></div></td>
<td nowrap="nowrap">
<div class="center">cos(330°) = 1.732 / 2 = 0.866</div></td>
</tr>
<tr>
<td>
<div class="center"><b>Tangent</b></div></td>
<td nowrap="nowrap">
<div class="center">tan(330°) = <span class="hilite">1</span> / 1.732 = <span class="hilite">0.577</span></div></td>
</tr>
</tbody></table>
<div style="clear:both"></div>
</div>
<p><span class="large">There is a pattern!</span> Look at when Sine Cosine and Tangent are <b>positive</b> ...</p>
<ul>
<li><span style="font-weight: bold;">All</span> three of them are positive
in <b>Quadrant I</b></li>
<li><span style="font-weight: bold;">Sine</span> only is positive in <b>Quadrant II</b></li>
<li><span style="font-weight: bold;">Tangent</span> only is positive in <b>Quadrant III</b></li>
<li><span style="font-weight: bold;">Cosine</span> only is positive in <b>Quadrant IV</b></li>
</ul>
<p>This can be shown even easier by:</p>
<p class="center"><img src="images/trig-quadrants-astc.svg" alt="trig ASTC is All,Sine,Tangent,Cosine" height="166" width="261"></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/trig-graph-quadrants.svg" alt="trig graph 4 quadrants" height="210" width="271"><br>
This graph shows "ASTC" also.</p>
<p>Some people like to remember the four letters <span style="font-weight: bold;">ASTC</span> by one of these:</p>
<ul>
<li><span style="font-weight: bold;">A</span>ll <span style="font-weight: bold;">S</span>tudents <span style="font-weight: bold;">T</span>ake <span style="font-weight: bold;">C</span>hemistry</li>
<li><span style="font-weight: bold;">A</span>ll <span style="font-weight: bold;">S</span>tudents <span style="font-weight: bold;">T</span>ake <span style="font-weight: bold;">C</span>alculus</li>
<li><span style="font-weight: bold;">A</span>ll <span style="font-weight: bold;">S</span>illy <span style="font-weight: bold;">T</span>om <span style="font-weight: bold;">C</span>ats</li>
<li><span style="font-weight: bold;">A</span>ll <span style="font-weight: bold;">S</span>tations <span style="font-weight: bold;">T</span>o <span style="font-weight: bold;">C</span>entral</li>
<li><b>A</b>dd <b>S</b>ugar <b>T</b>o <b>C</b>offee</li>
</ul>
<p>Maybe you could make up one of your own. Or
just remember <span style="font-weight: bold;">ASTC</span>.</p>
<h2>Inverse Sin, Cos and Tan</h2>
<p>What is the <a href="trig-inverse-sin-cos-tan.html">Inverse Sine</a> of 0.5?&nbsp;</p>
<p class="center larger">sin<sup>-1</sup>(0.5) = ?</p>
<p>In other words, when y is 0.5 on the graph below, what is the angle?</p>
<p class="center"><img src="images/trig-inverse-sin-cos-tan2.svg" alt="sine crosses 0.5 at 30,150,390, etc" style="max-width:100%" height="264" width="585"><span class="larger"><br>
There are <b>many angles</b> where y=0.5<br>
</span></p>
<p align="left">The trouble is: <b>a calculator will only give you one of those values</b> ...</p>
<p class="center" align="left">... but there are always two values between 0º and 360º<br>
(and infinitely many beyond):</p>
<table align="center" cellspacing="2" cellpadding="2" border="1">
<tbody>
<tr>
<td style="text-align: center;"><br>
</td>
<td style="text-align: center;">First value</td>
<td style="text-align: center;">Second value</td>
</tr>
<tr>
<td style="text-align: center;">Sine</td>
<td style="text-align: center;">θ</td>
<td style="text-align: center;">180º θ</td>
</tr>
<tr>
<td style="text-align: center;">Cosine</td>
<td style="text-align: center;">θ</td>
<td style="text-align: center;">360º θ</td>
</tr>
<tr>
<td style="text-align: center;">Tangent</td>
<td style="text-align: center;">θ</td>
<td style="text-align: center;">θ + 180º</td>
</tr>
</tbody>
</table>
<p>We can now solve equations for
any angle!</p>
<div class="example">
<h3>Example: Solve sin θ = 0.5</h3>
<p>We get the first solution from the calculator = sin<sup>-1</sup>(0.5) = 30º
(it is in Quadrant I)</p>
<p>The next solution is 180º 30º = 150º (Quadrant II)</p>
</div>
<div class="example">
<h3>Example: Solve&nbsp;cos θ
= 0.85</h3>
<p>We get&nbsp;the first solution from the calculator = cos<sup>-1</sup>(0.85) =
148.2º (Quadrant II)</p>
<p>The other solution is 360º &nbsp;148.2º = 211.8º (Quadrant III)</p>
</div>
<p>We may need to bring our angle between 0º and 360º by adding or subtracting 360º</p>
<div class="example">
<h3>Example: Solve&nbsp;tan θ
= 1.3</h3>
<p>We get&nbsp;the first solution from the calculator = tan<sup>-1</sup>(1.3) = 52.4º</p>
<p>This is less than 0º, so we add 360º: 52.4º + 360º = 307.6º (Quadrant IV)</p>
<p>The other&nbsp;solution is 52.4º + 180º&nbsp; =
127.6º (Quadrant II)</p>
</div>
<p>&nbsp;</p>
<div class="questions">3914, 3915, 3916, 3917, 3918, 3919, 3920, 3921, 3922, 3923</div>
<div class="activity"> <a href="../activity/walk-in-desert-2.html">Activity: A Walk in the Desert 2</a> </div>
<div class="related">
<a href="../geometry/unit-circle.html">Unit Circle</a>
<a href="trig-interactive-unit-circle.html">Interactive Unit Circle</a>
<a href="trigonometry-index.html">Trigonometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/trig-four-quadrants.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:12 GMT -->
</html>