lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/systems-linear-quadratic-graphical.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

374 lines
15 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/systems-linear-quadratic-graphical.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:40 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Systems of Linear and Quadratic Equations</title>
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." /><!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 class="center">Solving Systems of Linear <br />and Quadratic Equations
Graphically
</h1>
<p class="center"><i>(also see <a href="systems-linear-quadratic-equations.html">Systems of Linear and Quadratic Equations</a>)</i></p>
<div class="simple">
<table border="0" align="center">
<tr>
<td bgcolor="#eef"><img src="images/linear-quadratic-a.svg" alt="linear " /></td>
<td><span class="center">A <a href="linear-equations.html">Linear Equation</a> is an <b>equation</b> of a <b>line</b>.</span></td>
</tr>
<tr>
<td bgcolor="#eef"><img src="images/linear-quadratic-b.svg" alt="quadratic" /></td>
<td>A <a href="quadratic-equation.html">Quadratic Equation</a> is the equation of a <a href="../geometry/parabola.html">parabola</a> <br />
and has at least one variable squared
(such as x<sup>2</sup>)<br /></td>
</tr>
<tr>
<td bgcolor="#eef"><img src="images/linear-quadratic-c.svg" alt="linear and quadratic" /></td>
<td>And together they form a <b>System</b> <br />
of a Linear and a Quadratic Equation</td>
</tr>
</table>
</div>
<p>&nbsp;</p>
<p>A <b>System</b> of those two equations can be solved (find where they intersect), either:</p>
<ul>
<li>Using <a href="systems-linear-quadratic-equations.html">Algebra</a></li>
<li>Or <b>Graphically</b>, as we will find out!</li>
</ul>
<h2>How to Solve Graphically</h2>
<p>Easy! Plot both equations and see where they cross!</p>
<h3>Plotting the Equations</h3>
<p>We can plot them manually, or use a tool like the <a href="../data/function-grapher.html">Function Grapher</a>.</p>
<p>To plot them manually:</p>
<ul>
<li>make sure both equations are in &quot;y=&quot; form</li>
<li>choose some x-values that will hopefully be near where the two equations cross over</li>
<li>calculate y-values for those x-values</li>
<li>plot the points and see! </li>
</ul>
<h3>Choosing Where to Plot</h3>
<p>But what values should we plot? Knowing the <b>center</b> will help! </p>
<p>Taking the <a href="quadratic-equation.html">quadratic formula</a> and ignoring everything after the <span class="large">&plusmn;</span> gets us a central x-value:</p>
<p class="center"><img src="images/system-lin-quad-4.gif" width="268" height="133" alt="x = -b/2a on graph" /></p>
<p>Then choose some x-values either side and calculate y-values, like this:</p>
<div class="example">
<h3>Example: Solve these two equations graphically to 1 decimal place:</h3>
<ul>
<li>y = x<sup>2</sup> &minus; 4x + 5</li>
<li>y = x + 2 </li>
</ul>
<p>&nbsp;</p>
<p class="larger">Find a Central X Value:</p>
<p>The quadratic equation is <b>y = x<sup>2</sup> &minus; 4x + 5</b>, so a = 1, b = &minus;4 and c = 5</p>
<table border="0" align="center">
<tr>
<td rowspan="2" class="large">central x &nbsp;=&nbsp; </td>
<td class="large">&minus;b</td>
<td rowspan="2" class="large"> &nbsp;=&nbsp; </td>
<td class="large">&minus;(&minus;4)</td>
<td rowspan="2" class="large">&nbsp;=&nbsp; </td>
<td class="large">4</td>
<td rowspan="2" class="large">&nbsp;=&nbsp; 2</td>
</tr>
<tr>
<td align="center" class="large" style="border-top: 1px solid black;">2a</td>
<td align="center" class="large" style="border-top: 1px solid black;">2&times;1</td>
<td align="center" class="large" style="border-top: 1px solid black;">2</td>
</tr>
</table>
<p>&nbsp;</p>
<p class="larger">Now Calculate Values Around x=2</p>
<table border="0" align="center" cellpadding="5">
<tr>
<th width="50" align="center"><br />
<span class="larger">x</span></th>
<th align="center">Quadratic<br />
<span class="larger">x<sup>2</sup> &minus; 4x + 5</span></th>
<th width="100" align="center">Linear<br />
<span class="larger">x + 2</span></th>
</tr>
<tr>
<td align="center">0</td>
<td width="150" align="center">5</td>
<td align="center">2</td>
</tr>
<tr>
<td align="center">1</td>
<td align="center">2</td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center"><b>2</b></td>
<td align="center"><b>1 </b></td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center">3</td>
<td align="center">2</td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center">4</td>
<td align="center">5</td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center">5</td>
<td align="center">10</td>
<td align="center">7</td>
</tr>
</table>
<p>(We only calculate first and last of the linear equation as that is all we need for the plot.)</p>
<p>&nbsp;</p>
<p class="larger">Now Plot Them:</p>
<p class="center"><img src="images/system-lin-quad-1.gif" width="181" height="293" alt="system linear and quadratic points" /></p>
<p class="larger">We can see they cross at <b>about x = 0.7</b> and <b>about x = 4.3</b></p>
<p>Let us do the calculations for those values:</p>
<table border="0" align="center" cellpadding="5">
<tr>
<th width="50" align="center"><br />
<span class="larger">x</span></th>
<th align="center">Quadratic<br />
<span class="larger">x<sup>2</sup> &minus; 4x + 5</span></th>
<th width="100" align="center">Linear<br />
<span class="larger">x + 2</span></th>
</tr>
<tr>
<td align="center">0.7</td>
<td width="150" align="center">2.69</td>
<td align="center">2.8</td>
</tr>
<tr>
<td align="center">4.3</td>
<td align="center">6.29</td>
<td align="center">6.2</td>
</tr>
</table>
<p>Yes they are close.</p>
<p class="center">To 1 decimal place the two points are <b>(0.7, 2.8)</b> and <b>(4.3, 6.2)</b></p>
</div>
<h2>There Might Not Be 2 Solutions!</h2>
<p>There are three possible cases:</p>
<ul>
<li><b>No</b> real solution (happens when they never intersect)</li>
<li><b>One</b> real solution (when the straight line just touches the quadratic)</li>
<li><b>Two</b> real solutions (like the example above)</li>
</ul>
<p class="center"><img src="images/linear-quadratic-2.svg" width="80%" alt="linear and quadratic different intersections" /></p>
<p>Time for another example:</p>
<div class="example">
<h3>Example: Solve these two equations graphically:</h3>
<ul>
<li>4y &minus; 8x = &minus;40</li>
<li>y &minus; x<sup>2</sup> = &minus;9x + 21</li>
</ul>
<p>How do we plot these? They are not in &quot;y=&quot; format!</p>
<p class="larger">First make both equations into &quot;y=&quot; format:</p>
<p>Linear equation is: 4y &minus; 8x = &minus;40</p>
<div class="so">Add 8x to both sides: 4y = 8x &minus; 40</div>
<div class="so">Divide all by 4: <b>y = 2x &minus; 10</b></div>
<p>Quadratic equation is: y &minus; x<sup>2</sup> = &minus;9x + 21</p>
<div class="so">Add x<sup>2</sup> to both sides: <b>y = x<sup>2</sup> &minus; 9x + 21</b></div>
<p class="larger">&nbsp;</p>
<p class="larger">Now Find a Central X Value:</p>
<p>The quadratic equation is <b>y = x<sup>2</sup> &minus; 9x + 21</b>, so a = 1, b = &minus;9 and c = 21</p>
<table border="0" align="center">
<tr>
<td rowspan="2" class="large">central x &nbsp;=&nbsp; </td>
<td class="large">&minus;b</td>
<td rowspan="2" class="large">&nbsp;=&nbsp; </td>
<td class="large">&minus;(&minus;9)</td>
<td rowspan="2" class="large">&nbsp;=&nbsp; </td>
<td class="large">9</td>
<td rowspan="2" class="large">&nbsp;=&nbsp;4.5</td>
</tr>
<tr>
<td align="center" class="large" style="border-top: 1px solid black;">2a</td>
<td align="center" class="large" style="border-top: 1px solid black;">2&times;1</td>
<td align="center" class="large" style="border-top: 1px solid black;">2</td>
</tr>
</table>
<p>&nbsp;</p>
<p class="larger">Now Calculate Values Around x=4.5</p>
<table border="0" align="center" cellpadding="5">
<tr>
<th width="50" align="center"><br />
<span class="larger">x</span></th>
<th align="center">Quadratic<br />
<b>x<sup>2</sup> &minus; 9x + 21</b></th>
<th width="100" align="center">Linear<br />
<b>2x &minus; 10</b></th>
</tr>
<tr>
<td align="center">3</td>
<td width="150" align="center">3</td>
<td align="center">-4</td>
</tr>
<tr>
<td align="center">4</td>
<td align="center">1</td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center"><b>4.5</b></td>
<td align="center"><b>0.75</b></td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center">5</td>
<td align="center">1 </td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center">6</td>
<td align="center">3</td>
<td align="center">&nbsp;</td>
</tr>
<tr>
<td align="center">7</td>
<td align="center">7</td>
<td align="center">4</td>
</tr>
</table>
<p>&nbsp;</p>
<p class="larger">Now Plot Them:</p>
<p class="center"></p>
<p class="center"><img src="images/system-lin-quad-2.gif" width="237" height="311" alt="system linear and quadratic points" /></p>
<p class="center">They never cross! There is <b>no solution</b>.</p>
</div>
<p>&nbsp;</p>
<div class="example">
<h3>Real World Example</h3>
<p><span class="larger">Kaboom!</span></p>
<p>The cannon ball flies through the air, following a <a href="../geometry/parabola.html">parabola</a>: <span class="larger">y = 2 + 0.12x - 0.002x<sup>2</sup></span></p>
<p>The land slopes upward: <span class="larger">y = 0.15x </span></p>
<p>Where does the cannon ball land?</p>
<p class="center"><img src="images/linear-quadratic-5.gif" width="471" height="235" alt="linear quadratic cannon" /></p>
<p>Let's fire up the <a href="../data/function-grapher42f4.html?func1=2+0.12x-0.002x^2&amp;func2=0.15x&amp;xmin=-48&amp;xmax=48&amp;ymin=-32&amp;ymax=32">Function Grapher</a>!</p>
<p>Enter <span class="larger">2 + 0.12x - 0.002x^2</span> for one function and <span class="larger">0.15x</span> for the other.</p>
<p>Zoom out, then zoom in where they cross. You should get something like this:</p>
<p class="center"><img src="images/linear-quadratic-6.gif" width="230" height="101" alt="linear quadratic " /></p>
<p class="center">By zooming in far enough we can find they cross at <b>(25, 3.75)</b></p>
</div>
<h2>Circle and Line</h2>
<div class="example">
<h3>Example: Find the points of intersection to 1 decimal place of </h3>
<ul>
<li>The circle <b>x<sup>2</sup> + y<sup>2</sup> = 25 </b></li>
<li>And the straight line <b>3y - 2x = 6</b></li>
</ul>
<p>&nbsp;</p>
<h3>The Circle</h3>
<p>The &quot;Standard Form&quot; for <a href="circle-equations.html">the equation of a circle</a> is <span class="large">(x-a)<sup>2</sup> + (y-b)<sup>2</sup> = r<sup>2</sup></span>
</p>
<p>Where <span class="large">(a, b)</span> is the center of the circle and <span class="large">r</span> is the radius.</p>
<p>For <b>x<sup>2</sup> + y<sup>2</sup> = 25 </b>we can see that</p>
<ul>
<li>a=0 and b=0 so the center is at <b>(0, 0)</b>,</li>
<li>and for the radius <b>r<sup>2</sup> = 25 </b>, so <b>r = &radic;25 = 5</b></li>
</ul>
<p>We don't need to make the circle equation in &quot;y=&quot; form, as we have enough information to plot the circle now.</p>
<p>&nbsp;</p>
<h3>The Line</h3>
<p>First put the line in &quot;y=&quot; format: </p>
<div class="so">Move 2x to right hand side: 3y = 2x + 6</div>
<div class="so">Divide by 3: y = 2x/3 + 2</div>
<p>To plot the line, let's choose two points either side of the circle:</p>
<ul>
<li>at <b>x = &minus;6</b>, <b>y =</b> (2/3)(<b>&minus;</b>6) + 2 = <b>&minus;2</b></li>
<li>at <b>x = 6</b>, <b>y =</b> (2/3)(6) + 2 = <b>6</b></li>
</ul>
<p>Now plot them!</p>
<p class="center"><img src="images/system-lin-quad-3.gif" width="332" height="325" alt="line vs circle" /></p>
<p>We can now see that they cross at <b>about (-4.8, -1.2)</b> and <b> (3.0, 4.0)</b></p>
<p>For an exact solution see <a href="systems-linear-quadratic-equations.html">Systems of Linear and Quadratic Equations </a></p></div>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(8199, 8200, 8201, 8202, 8203, 8204, 8205, 8206, 8207, 8208);</script>&nbsp;
</div>
<div class="related">
<a href="systems-linear-quadratic-equations.html">Systems of Linear and Quadratic Equations</a>
<a href="index.html">Algebra Index</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/systems-linear-quadratic-graphical.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:42 GMT -->
</html>