Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

371 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/polynomials-solving.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:09 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Solving Polynomials</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" --> <h1 align="center">Solving Polynomials</h1>
<span class="larger">A <a href="polynomials.html">polynomial</a> looks like this:</span>
<div class="beach">
<table border="0" align="center" cellpadding="5">
<tr align="center">
<td><img src="images/polynomial-1var-example.svg" alt="polynomial example" /></td>
</tr>
<tr align="center">
<td>example of a polynomial<br /></td>
</tr>
</table>
</div>
<h2>Solving</h2>
<p>&quot;Solving&quot; means finding the &quot;roots&quot; ... </p>
<p class="center">... a &quot;root&quot; (or &quot;zero&quot;) is where the function <b>is equal to zero</b>: </p>
<p class="center"><img src="images/inequality-graph-function.svg" alt="Graph of Inequality" /></p>
<p class="center">In between the roots the function is either entirely above, <br />
or entirely below, the x-axis</p>
<div class="example">
<h3>Example: 2 and 2 are the roots of the function x<sup>2</sup> 4</h3>
<p class="center"><img src="images/root-function.svg" alt="roots (zeros) of x^2-4"></p>
<p>Let's check:</p>
<ul>
<li>when x = 2, then x<sup>2</sup> 4 = (2)<sup>2</sup> 4 = 4 4 = <b>0</b></li>
<li>when x = 2, then x<sup>2</sup> 4 = 2<sup>2</sup> 4 = 4 4 = <b>0</b></li>
</ul>
</div><p>&nbsp;</p>
<p class="center larger"><b>How</b> do we solve polynomials? That depends on the <b>Degree</b>!</p>
<h2>Degree</h2>
<p>The <b>first step</b> in solving a polynomial is to find its degree.</p>
<p>The <a href="degree-expression.html">Degree</a> of a Polynomial with one variable is ...</p>
<p align="center">... the <a href="../exponent.html">largest exponent</a> of that variable.</p>
<h3 align="center"><img src="images/degree-example-a.svg" alt="polynomial" /></h3>
<p>When we know the degree we can also give the polynomial a name:</p>
<div class="simple">
<table border="0" align="center" cellpadding="0" cellspacing="0">
<tr align="center" class="larger">
<th>Degree</th>
<th>Name</th>
<th>Example</th>
<th>Graph Looks Like</th>
</tr>
<tr align="center" class="larger">
<td height="50" align="center">0</td>
<td height="50">Constant</td>
<td height="50" class="large">7</td>
<td rowspan="4"><img src="images/polynomial-degree-graphs.svg" alt="polynomial degree graphs" /></td>
</tr>
<tr align="center" class="larger">
<td height="50" align="center">1</td>
<td height="50"><a href="linear-equations.html">Linear</a></td>
<td height="50" class="large">4x+3</td>
</tr>
<tr align="center" class="larger">
<td height="50" align="center">2</td>
<td height="50"><a href="quadratic-equation.html">Quadratic</a></td>
<td height="50" class="large">x<sup>2</sup>&minus;3x+2</td>
</tr>
<tr align="center" class="larger">
<td height="50" align="center">3</td>
<td height="50">Cubic </td>
<td height="50" class="large">2x<sup>3</sup>&minus;5x<sup>2</sup></td>
</tr>
<tr align="center" class="larger">
<td height="50" align="center">4</td>
<td height="50">Quartic</td>
<td height="50" class="large">x<sup>4</sup>+3x&minus;2</td>
<td>...</td>
</tr>
<tr align="center" class="larger">
<td height="50" align="center">etc</td>
<td height="50">...</td>
<td height="50">...</td>
<td>...</td>
</tr>
</table>
</div>
<h2>How To Solve</h2>
<p>So now we know the degree, how to solve?</p>
<div class="bigul">
<ul>
<li>Read how to solve <a href="linear-equations.html">Linear Polynomials</a> (Degree 1) using simple algebra.</li>
<li>Read how to solve <a href="quadratic-equation.html">Quadratic Polynomials</a> (Degree 2) with a little work,</li>
<li>It can be hard to solve Cubic (degree 3) and Quartic (degree 4) equations,</li>
<li>And beyond that it <b>can be impossible</b> to solve polynomials directly.</li>
</ul>
</div>
<p>So what do we do with ones we can't solve? Try to solve them a piece at a time!</p>
<div class="center80">
<p>If we find one root, we can then <b>reduce the polynomial by one degree</b> (example later) and this may be enough to solve the whole polynomial.</p>
</div>
<p>Here are some main ways to find roots.</p>
<h3>1. Basic Algebra</h3>
<p>We may be able to solve using basic algebra:</p>
<div class="example">
<h3>Example: <b>2x+1</b> </h3>
<p><b>2x+1</b> is a linear polynomial:</p>
<p align="center"><img src="images/graph-line.svg" alt="line on a graph" /></p>
<p align="center">The graph of <b>y = 2x+1</b> is a straight line</p>
<p>It is linear so there is one root. </p>
<p>Use Algebra to solve:</p>
<p align="center">A &quot;root&quot; is when y is zero: <span class="larger">2x+1 = 0</span></p>
<p align="center">Subtract 1 from both sides: <span class="larger">2x = &minus;1</span></p>
<p align="center">Divide both sides by 2: <span class="larger">x = &minus;1/2</span></p>
<p>And that is the solution: </p>
<p align="center" class="large"> x = &minus;1/2</p>
<p>(You can also see this on the graph)</p>
</div>
<p>We can also solve <a href="quadratic-equation.html">Quadratic Polynomials</a> using basic algebra (read that page for an explanation).</p>
<p>&nbsp;</p>
<h3>2. By experience, or simply guesswork. </h3>
<p>It is always a good idea to see if we can do simple factoring:</p>
<div class="example">
<h3>Example: x<sup>3</sup>+2x<sup>2</sup>&minus;x</h3>
<p>This is cubic ... but wait ... we can factor out &quot;x&quot;:</p>
<p align="center" class="larger">x<sup>3</sup>+2x<sup>2</sup>&minus;x = x(x<sup>2</sup>+2x&minus;1)</p>
<p>Now we have one root (x=0) and what is left is quadratic, which we can solve exactly.</p>
</div>
Or we may notice a familiar pattern:
<div class="example">
<h3>Example: x<sup>3</sup>&minus;8</h3>
<p>Again this is cubic ... but it is also the &quot;<a href="polynomials-difference-two-cubes.html">difference of two cubes</a>&quot;:</p>
<p align="center" class="larger">x<sup>3</sup>&minus;8 = x<sup>3</sup>&minus;2<sup>3</sup></p>
<p>And so we can turn it into this:</p>
<p align="center" class="larger">x<sup>3</sup>&minus;8 = (x&minus;2)(x<sup>2</sup>+2x+4) </p>
<p>There is a root at x=2, because:</p>
<p align="center"> <span class="larger">(2&minus;2)(2<sup>2</sup>+2&times;2+4) = <b>(0)</b>(2<sup>2</sup>+2&times;2+4)</span></p>
<p>And we can then solve the quadratic <span class="larger">x<sup>2</sup>+2x+4</span> and we are done</p>
</div>
<p>&nbsp;</p>
<h3>3. Graphically. </h3>
<p>Graph the polynomial and see where it crosses the x-axis.</p>
<table width="80%" border="0" align="center">
<tr>
<td><a href="../data/function-grapher.html"><img src="../data/images/function-grapher-sm.gif" alt="Function Grapher" width="86" height="55" /></a></td>
<td>&nbsp;</td>
<td>We can enter the polynomial into the <a href="../data/function-grapher.html">Function Grapher</a>, and then zoom in to find where it crosses the x-axis.</td>
</tr>
</table>
<p>Graphing is a good way to find approximate answers, and we may also get lucky and discover an exact answer.</p>
<div class="center80">
<p class="larger">Caution: before you jump in and graph it, you should really know <a href="polynomials-behave.html">How Polynomials Behave</a>, so you find all the possible answers!</p>
</div>
<h2>Factors</h2>
<p><b>This is useful to know:</b> When a polynomial is factored like this:</p>
<p align="center" class="large">f(x) = (x&minus;a)(x&minus;b)(x&minus;c)...</p>
<p class="larger center">Then a, b, c, etc are the <b>roots</b>!</p>
<p>So Linear Factors and Roots are related, know one and we can find the other.</p>
<p>(Read <a href="polynomials-remainder-factor.html">The Factor Theorem</a> for more details.)</p>
<div class="example">
<h3>Example: f(x) = (x<sup>3</sup>+2x<sup>2</sup>)(x&minus;3)</h3>
<p>We see &quot;(x&minus;3)&quot;, and that means that 3 is a root (or &quot;zero&quot;) of the function.</p>
<p><b>Sure?</b></p>
<p>Well, let us put &quot;3&quot; in place of x:</p>
<p align="center" class="larger">f(x) = (3<sup>3</sup>+2&middot;3<sup>2</sup>)(3&minus;3)</p>
<p align="center" class="larger">f(3) = (3<sup>3</sup>+2&middot;3<sup>2</sup>)(<span class="hi">0</span>)</p>
<p><b>Yes!</b> f(3)=0, so 3 is a root.</p>
</div>
<h2>How to Check</h2>
<p>Found a root? <b>Check it! </b></p>
<p>Simply put the root in place of &quot;x&quot;: the polynomial should be equal to zero.</p>
<div class="example">
<h3>Example: 2x<sup>3</sup>&minus;x<sup>2</sup>&minus;7x+2</h3>
<p>The polynomial is degree 3, and could be difficult to solve. So let us plot it first:</p>
<p align="center"><img src="images/graph-2x3mx2m7xp2.gif" alt="2x^3&minus;x^2&minus;7x+2" width="248" height="134" /></p>
<p>The curve crosses the x-axis at three points, and one of them <b>might be at 2</b>. We can check easily, just put &quot;2&quot; in place of &quot;x&quot;:</p>
<p align="center"><b>f(2)</b> = 2(2)<sup>3</sup>&minus;(2)<sup>2</sup>&minus;7(2)+2 <br>
= 16&minus;4&minus;14+2 <br>
= <b>0</b></p>
<p>Yes! <b>f(2)=0</b>, so we have found a root!</p>
<p align="center">&nbsp;</p>
<p>How about where it crosses near <b>&minus;1.8</b>:</p>
<p align="center"><b>f(&minus;1.8)</b> = 2(&minus;1.8)<sup>3</sup>&minus;(&minus;1.8)<sup>2</sup>&minus;7(&minus;1.8)+2 <br>
= &minus;11.664&minus;3.24+12.6+2 <br>
= <b>&minus;0.304</b></p>
<p>No, it isn't equal to zero, so &minus;1.8 will not be a root (but it may be close!)</p>
</div>
<p>But we <b>did</b> discover one root, and we can use that to simplify the polynomial, like this</p>
<div class="example">
<h3>Example (continued): 2x<sup>3</sup>&minus;x<sup>2</sup>&minus;7x+2 </h3>
<p>So, <b>f(2)=0</b> is a root ... that means we also know a factor:</p>
<p align="center"><span class="large">(x&minus;2)</span> must be a factor of <span class="large">2x<sup>3</sup>&minus;x<sup>2</sup>&minus;7x+2</span></p>
<p>&nbsp;</p>
<p>Next, divide <span class="large">2x<sup>3</sup>&minus;x<sup>2</sup>&minus;7x+2</span> by <span class="large">(x&minus;2)</span> using <a href="polynomials-division-long.html">Polynomial Long Division</a> to find:</p>
<p align="center"><span class="large">2x<sup>3</sup>&minus;x<sup>2</sup>&minus;7x+2</span> = <span class="large">(x&minus;2)(2x<sup>2</sup>+3x&minus;1)</span></p>
<p align="center">&nbsp;</p>
<p>So now we can solve <span class="large">2x<sup>2</sup>+3x&minus;1</span> as a Quadratic Equation and we will know all the roots.</p>
</div>
<p>That last example showed how useful it is to find just one root. Remember:</p>
<div class="center80">
<p>If we find one root, we can then <b>reduce the polynomial by one degree</b> and this may be enough to solve the whole polynomial.</p>
</div>
<h2>How Far Left or Right</h2>
<p>When trying to find roots, <b>how far left and right</b> of zero should we go?</p>
<p>There is a way to tell,<b></b> and there are a few calculations to do, but it is all simple arithmetic. Read <a href="polynomials-bounds-zeros.html">Bounds on Zeros</a> for all the details.</p>
<h2>Have We Got All The Roots?</h2>
<p>There is an easy way to know <b>how many roots</b> there are. The <a href="fundamental-theorem-algebra.html">Fundamental Theorem of Algebra</a> says:</p>
<div class="center80">
<p align="center"><span class="larger">A polynomial of degree <b>n</b> ... <br>
...
has <b>n</b> roots (zeros)</span><br />
but we may need to use <a href="../numbers/complex-numbers.html">complex numbers</a></p>
</div>
<p>So: <b>number of roots = the degree of polynomial</b>.</p>
<div class="example">
<h3>Example: 2x<sup>3</sup> + 3x &minus; 6</h3>
<p>The degree is 3 (because the largest exponent is 3), and so:</p>
<p align="center" class="larger">There are <b>3</b> roots.</p>
</div>
<h2>But Some Roots May Be Complex</h2>
<p>Yes, indeed, some roots may be <a href="../numbers/complex-numbers.html">complex numbers</a> (ie have an <a href="../numbers/imaginary-numbers.html">imaginary</a> part), and so will not show up as a simple &quot;crossing of the x-axis&quot; on a graph.</p>
<p>But there is an interesting fact:</p>
<p align="center" class="larger">Complex Roots <b>always come in pairs</b>!</p>
<p align="center"><img src="images/complex-conjugate-pair.gif" alt="Complex Conjugate Pairs" width="227" height="171" />
</p>
<p>So we either get <b>no</b> complex roots, or <b>2</b> complex roots, or <b>4</b>, etc... Never an odd number.</p>
<p>Which means we automatically know this:</p>
<div class="simple">
<table border="0" align="center">
<tr>
<th>Degree</th>
<th align="center">Roots</th>
<th align="center">Possible Combinations</th>
</tr>
<tr align="center">
<td>1</td>
<td>1</td>
<td> 1 Real Root </td>
</tr>
<tr align="center">
<td> 2 </td>
<td>2</td>
<td>2 Real Roots, <b>or</b> 2 Complex Roots </td>
</tr>
<tr align="center">
<td>3</td>
<td>3</td>
<td>3 Real Roots, <b>or</b> 1 Real and 2 Complex Roots</td>
</tr>
<tr align="center">
<td>4</td>
<td>4</td>
<td>4 Real Roots, <b>or</b> 2 Real and 2 Complex Roots, <b>or</b> 4 Complex Roots </td>
</tr>
<tr align="center">
<td>etc</td>
<td>&nbsp;</td>
<td>etc!</td>
</tr>
</table>
</div>
<h2>Positive or Negative Roots?</h2>
<p>There is also a special way to tell how many of the roots are <b>negative</b> or <b>positive</b> called the <a href="polynomials-rule-signs.html">Rule of Signs</a> that you may like to read about.</p>
<h2>Multiplicity of a Root</h2>
<p>Sometimes a factor appears more than once. We call that <b>Multiplicity</b>:</p>
<div class="center80">
<p align="center"><b>Multiplicity</b> is how often a certain root is part of the factoring.</p>
</div>
<div class="example">
<h3>Example: f(x) = (x&minus;5)<sup>3</sup>(x+7)(x&minus;1)<sup>2</sup></h3>
<p>This could be written out in a more lengthy way like this:</p>
<p align="center" class="larger"> f(x) = (x&minus;5)(x&minus;5)(x&minus;5)(x+7)(x&minus;1)(x&minus;1)</p>
<p><span class="large"> (x&minus;5)</span> is used 3 times, so the root &quot;5&quot; has a multiplicity of <b>3</b>, likewise <span class="large">(x+7)</span> appears once and<span class="large"> (x&minus;1)</span> appears twice. So:</p>
<ul>
<li>the root <span class="larger">+5</span> has a multiplicity of <b>3</b></li>
<li>the root <span class="larger">&minus;7</span> has a multiplicity of <b>1</b> (a &quot;simple&quot; root)</li>
<li>the root <span class="larger">+1</span> has a multiplicity of <b>2</b></li>
</ul>
</div>
<p class="larger">Q: Why is this useful? <br />
A: It makes the graph behave in a special way!</p>
<p>When we see a factor like <b>(x-r)<sup>n</sup></b>, &quot;n&quot; is the multiplicity, and</p>
<ul>
<li>even multiplicity <b>just touches the axis</b> at &quot;r&quot; (and otherwise stays one side of the x-axis)</li>
<li>odd multiplicity <b>crosses the axis</b> at &quot;r&quot; (changes from one side of the x-axis to the other)</li>
</ul>
<p>We can see it on this graph:</p>
<div class="example">
<h3>Example: f(x) = (x&minus;2)<sup>2</sup>(x&minus;4)<sup>3</sup></h3>
<p><span class="larger">(x&minus;2)</span> has <b>even multiplicity</b>, so it just touches the axis at x=2</p>
<p><span class="larger">(x&minus;4)</span> has <b>odd multiplicity</b>, so it crosses the axis at x=4</p>
<p>Like this:</p>
<p align="center"><img src="images/polynomial-multiplicity-example.gif" alt="(x&minus;2)^2(x&minus;4)^3" width="320" height="194" /></p>
</div>
<h2>Summary</h2>
<ul>
<div class="bigul">
<li>We can directly solve polynomials of Degree 1 (linear) and 2 (quadratic)</li>
<li>For Degree 3 and up, graphs can be helpful</li>
<li>It is also helpful to:
<ul>
<li>Know how far left or right the roots may be</li>
<li>Know how many roots (the same as its degree)</li>
<li>Estimate how many may be complex, positive or negative</li>
</ul>
</li>
<li>Multiplicity is how often a certain root is part of the factoring.</li>
<br />
</div>
</ul>
<div class="questions">
<script type="text/javascript">getQ(466,467,468,469,1116,1117, 2276, 2277, 2278, 2279);</script>&nbsp; </div>
<div class="related"> <a href="introduction.html">Introduction to Algebra</a> <a href="definitions.html">Algebra &minus; Basic Definitions</a> <a href="index.html">Algebra Index</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/polynomials-solving.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:10 GMT -->
</html>