Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

438 lines
18 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/infinite-series.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:49 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Infinite Series</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style>
.intgl {display:inline-block; margin: -4% 0.6% 4% -1.8%; transform: translateX(20%) translateY(35%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -5px 8px;}
.intgl .symb {font: 180% Georgia; }
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Infinite Series</h1>
<p class="center">The <b>sum</b> of infinite terms that follow a rule.</p>
<p>When we have an infinite <a href="sequences-series.html">sequence</a> of values:</p>
<p class="center large"><span class="intbl"><em>1</em><strong>2</strong></span> , <span class="intbl"><em>1</em><strong>4</strong></span> , <span class="intbl"><em>1</em><strong>8</strong></span> , <span class="intbl"><em>1</em><strong>16</strong></span> , ...</p>
<p>which follow a rule (in this case each term is half the previous one),</p>
<p class="center">and we <b>add them all up</b>:</p>
<p class="center large"><span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>8</strong></span> + <span class="intbl"><em>1</em><strong>16</strong></span> + ... = S</p>
<p class="center">we get an <b>infinite series</b>.</p>
<div class="words">
<p>"Series" sounds like it is the <b>list of numbers</b>, but it is actually when we add them together.</p>
</div>
<p class="center"><i>(Note: The dots <i>"..."</i> mean "continuing on indefinitely")</i></p>
<h2>First Example</h2>
<p>You might think it is impossible to work out the answer, but sometimes it can be done!</p>
<p>Using the example from above:</p>
<p class="center large"><span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>8</strong></span> + <span class="intbl"><em>1</em><strong>16</strong></span> + ... = 1</p>
<p>And here is why:</p>
<p class="center"><img src="images/infinite-series-1-2n.svg" alt="Sum of 1/2^n as boxes" height="208" width="208" ><br>
(We also show a proof using Algebra below)</p>
<h2>Notation</h2>
<p>We often use <a href="sigma-notation.html">Sigma Notation</a> for infinite series. Our example from above looks like:</p>
<p class="center"><img src="images/sigma-1-2n.gif" alt="Sum of 1/2^n" height="70" width="346" ></p>
<table align="center" width="55%" border="0">
<tbody>
<tr>
<td><img src="images/sigma.gif" alt="Sigma" height="34" width="32" ></td>
<td>This symbol (called Sigma) means "sum up"</td>
</tr>
</tbody></table>
<p>Try putting 1/2^n into the <a href="../numbers/sigma-calculator.html">Sigma Calculator</a>.</p>
<h2>Another Example</h2>
<p class="center large"><span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>16</strong></span> + <span class="intbl"><em>1</em><strong>64</strong></span> + <span class="intbl"><em>1</em><strong>256</strong></span> + ... = <span class="intbl"><em>1</em><strong>3</strong></span></p>
<p>Each term is a quarter of the previous one, and the sum equals 1/3:</p>
<p class="center"><img src="images/infinite-series-1-4n.svg" alt="Sum 1/4^n as boxes" height="208" width="208" ><br>
Of the 3 spaces (1, 2 and 3) only number 2 gets filled up, hence 1/3.</p>
<p>(By the way, this one was worked out by <i><b>Archimedes</b></i> over 2200 years ago.)</p>
<h2>Converge</h2>
<p>Let's add the terms one at a time. When the "sum so far" approaches a finite value, the series is said to be "<b>convergent</b>":</p>
<div class="example">
<p>Our first example:</p>
<p class="center large"><span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>8</strong></span> + <span class="intbl"><em>1</em><strong>16</strong></span> + ...</p>
<p>Adds up like this:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td>Term</td>
<td>&nbsp;</td>
<td>Sum so far</td>
</tr>
<tr style="text-align:center;">
<td>1/2</td>
<td>&nbsp;</td>
<td>0.5</td>
</tr>
<tr style="text-align:center;">
<td>1/4</td>
<td>&nbsp;</td>
<td>0.75</td>
</tr>
<tr style="text-align:center;">
<td>1/8</td>
<td>&nbsp;</td>
<td>0.875</td>
</tr>
<tr style="text-align:center;">
<td>1/16</td>
<td>&nbsp;</td>
<td>0.9375</td>
</tr>
<tr style="text-align:center;">
<td>1/32</td>
<td>&nbsp;</td>
<td>0.96875</td>
</tr>
<tr style="text-align:center;">
<td>...</td>
<td>&nbsp;</td>
<td>...</td>
</tr>
</tbody></table>
<p>The sums are heading towards a value (1 in this case), so this series is <b>convergent</b>.</p>
</div>
<div class="words">
<p>The "sum so far" is called a <a href="partial-sums.html">partial sum</a> .</p>
<p>So, more formally, we say it is a convergent series when:</p>
<p class="center">"the sequence of partial sums has a finite <a href="../calculus/limits.html">limit</a>."</p>
</div>
<h2>Diverge</h2>
<p>If the sums do not converge, the series is said to <b>diverge</b>.</p>
<p>It can go to <b>+infinity</b>, <b>infinity</b> or just go up and down without settling on any value.</p>
<div class="example">
<h3>Example:
<div class="center large">1 + 2 + 3 + 4 + ...</div></h3>
<p>Adds up like this:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td>Term</td>
<td>&nbsp;</td>
<td>Sum so far</td>
</tr>
<tr style="text-align:center;">
<td>1</td>
<td>&nbsp;</td>
<td>1</td>
</tr>
<tr style="text-align:center;">
<td>2</td>
<td>&nbsp;</td>
<td>3</td>
</tr>
<tr style="text-align:center;">
<td>3</td>
<td>&nbsp;</td>
<td>6</td>
</tr>
<tr style="text-align:center;">
<td>4</td>
<td>&nbsp;</td>
<td>10</td>
</tr>
<tr style="text-align:center;">
<td>5</td>
<td>&nbsp;</td>
<td>15</td>
</tr>
<tr style="text-align:center;">
<td>...</td>
<td>&nbsp;</td>
<td>...</td>
</tr>
</tbody></table>
<p>The sums are just getting larger and larger, not heading to any finite value.</p>
<p>It does not converge, so it is <b>divergent</b>, and heads to infinity.</p>
</div>
<div class="example">
<h3>Example: 1 1 + 1 1 + 1 ...</h3>
<p>It goes up and down without settling towards some value, so it is <b>divergent</b>.</p>
</div>
<h2>More Examples</h2>
<h3><a href="sequences-sums-arithmetic.html">Arithmetic Series</a></h3>
<p>When the <b>difference</b> between each term and the next is a constant, it is called an <b>arithmetic series</b>.</p>
<p class="center"><img src="images/series-arithmetic.gif" alt="Sigma n=0 to infinity of (10+2n) = 10+12+14+..." height="71" width="438" ></p>
<p class="center">(The difference between each term is 2.)</p>
<p>&nbsp;</p>
<h3><a href="sequences-sums-geometric.html">Geometric Series</a></h3>
<p>When the <b>ratio</b> between each term and the next is a constant, it is called a <b>geometric series</b>.</p>
<p>Our first example from above is a geometric series:</p>
<p class="center"><img src="images/sigma-1-2n.gif" alt="Sum of 1/2^n" height="70" width="346" ></p>
<p class="center">(The ratio between each term is <b>½</b>)</p>
<p>And, as promised, we can show you why that series equals 1 using Algebra:</p>
<div class="tbl">
<div class="row"><span class="left"><b>First</b>, we will call the whole sum <b>"S"</b>:</span><span class="right">&nbsp; &nbsp;S = 1/2 + 1/4 + 1/8 + 1/16 + ...</span></div>
<div class="row"><span class="left"><b>Next</b>, divide <b>S</b> by <b>2</b>:</span><span class="right">S/2 = 1/4 + 1/8 + 1/16 + 1/32 + ...</span></div>
<p class="larger">Now <b>subtract</b> S/2 from S</p>
<p>All the terms from 1/4 onwards cancel out.</p>
<div class="row"><span class="left">And we get:</span><span class="right">S S/2 = 1/2</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"> S/2 = 1/2</span></div>
<div class="row"><span class="left">And so:</span><span class="right">S = 1</span></div>
</div>
<p>&nbsp;</p>
<h3>Harmonic Series</h3>
<p>This is the Harmonic Series:</p>
<p class="center"><img src="images/series-harmonic.gif" alt="Sigma n=1 to infinity of (1/n) = 1 + 1/2 + 1/3 + 1/4 + ..." height="70" width="397" ></p>
<p>It is divergent.</p>
<div class="example">
<p>How do we know? Let's compare it to another series:</p>
<table style="border: 0; margin:auto; text-align:center;">
<tbody>
<tr>
<td>1</td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span></td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>3</strong></span>+<span class="intbl"><em>1</em><strong>4</strong></span></td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>5</strong></span>+<span class="intbl"><em>1</em><strong>6</strong></span>+<span class="intbl"><em>1</em><strong>7</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span></td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>9</strong></span>+...</td></tr>
<tr>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td></tr>
<tr>
<td>1</td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span></td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>4</strong></span>+<span class="intbl"><em>1</em><strong>4</strong></span></td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>8</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span></td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>16</strong></span>+...</td></tr>
</tbody></table>
<p class="center">In each case, the <b>top values are equal or greater</b> than the bottom ones.</p>
<p>Now, let's add up the bottom groups:</p>
<table style="border: 0; margin:auto; text-align:center;">
<tbody>
<tr>
<td>1</td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span></td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>4</strong></span>+<span class="intbl"><em>1</em><strong>4</strong></span></td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>8</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span>+<span class="intbl"><em>1</em><strong>8</strong></span></td>
<td style="width:30px;">+</td>
<td><span class="intbl"><em>1</em><strong>16</strong></span>+...</td>
<td style="width:30px;"><br>
</td>
<td><br>
</td></tr>
<tr>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><img src="../images/style/down.svg" alt="down" height="49" width="50" ></td>
<td><br>
</td>
<td><br>
</td></tr>
<tr>
<td>1</td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span></td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span></td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span><span class="intbl"><strong></strong></span></td>
<td>+</td>
<td><span class="intbl"><em>1</em><strong>2</strong></span></td>
<td>+</td>
<td>... = ∞</td></tr>
</tbody></table>
<p class="center"><b>That</b> series is divergent.</p>
<p>So the <b>harmonic series</b> must also be divergent.</p>
</div>
<p>Here is another way:</p>
<div class="example">
<p>We can sketch the area of each term and compare it to the area under the <b>1/x</b> curve:</p>
<p class="center"><img src="images/series-harmonic-graph.svg" alt="harmonic series graph" height="181" width="263" ><br>
<span class="larger"><b>1/x</b> vs harmonic series area</span></p>
<p>Calculus tells us the area under 1/x (from 1 onwards) approaches <b>infinity</b>, and the harmonic series is greater than that, so it must be divergent.</p>
</div>
<p>&nbsp;</p>
<h3>Alternating Series</h3>
<p>An Alternating Series has terms that alternate between positive and negative.</p>
<p>It may or may not converge.</p>
<div class="example">
<h3>Example: <span class="intbl"><em>1</em><strong>2</strong></span> <span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>8</strong></span> <span class="intbl"><em>1</em><strong>16</strong></span> + ... = <span class="intbl"><em>1</em><strong>3</strong></span></h3>
<p>This illustration may convince you that the terms converge on <span class="intbl"><em>1</em><strong>3</strong></span>:</p>
<p class="center"><img src="images/infinite-series-1-2m1-4.svg" alt="harmonic series graph" height="212" width="364" ></p>
<p>Maybe you can try to prove it yourself? Try pairing up each plus and minus pair, then look up above for a series that matches.</p>
</div>
<p>Another example of an Alternating Series (based on the Harmonic Series above):</p>
<p class="center"><img src="images/series-alternating.gif" alt="Sigma n=1 to infinity of (-1)^(n+1) /n = 1 - 1/2 + 1/3 - 1/4 + ... = ln(2)" height="71" width="473" ></p>
<p>This one converges on the natural <a href="logarithms.html">logarithm</a> of 2</p>
<div class="example">
<h3>Advanced Explanation:</h3>
<p>To show WHY, first we start with a square of area 1, and then pair up the minus and plus fractions to show how they cut the area down to the area under the curve <b>y=1/x</b> between 1 and 2:</p>
<p class="center"><img src="images/alternating-harmonic.svg" alt="alternating harmonic proof" height="160" width="617" ></p>
<p>Can you see what remains is the area of 1/x from 1 to 2?</p>
<p>Using <a href="../calculus/integration-introduction.html">integral calculus</a> (trust me) that area is <b>ln(2)</b>:</p>
<div class="center">
<div class="intgl">
<div class="to">2</div>
<div class="symb"></div>
<div class="from">1</div>
</div>1/x dx = ln(2) ln(1) = <b>ln(2)</b></div>
</div>
<p>&nbsp;</p>
<p><b>You</b> can investigate this further!</p>
<ul>
<li>do those rectangles really make the area above the curve as shown?</li>
<li>is the area below the curve really ln(2) = 0.693... ? Try the <a href="../calculus/integral-approximation-calculator.html">Integral Approximation Calculator</a> to see (y=1/x between 1 and 2)</li>
</ul>
<h2>Order!</h2>
<p>The order of the terms can be very important! We can sometimes get weird results when we change their order.</p>
<p>For example in an alternating series, what if we made all positive terms come first? So be careful!</p>
<h2>More</h2>
<p>There are other types of Infinite Series, and it is interesting (and often challenging!) to work out if they are convergent or not, and what they may converge to.</p>
<p>&nbsp;</p>
<div class="related">
<a href="sigma-notation.html">Sigma Notation</a>
<a href="../numbers/sigma-calculator.html">Sigma Calculator</a>
<a href="partial-sums.html">Partial Sums</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/infinite-series.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:52 GMT -->
</html>