Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

200 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/eulers-formula.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:29 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Euler's Formula for Complex Numbers</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content="(PICS-1.1 &quot;http://www.classify.org/safesurf/&quot; L gen true for &quot;http://www.mathsisfun.com&quot; r (SS~~000 1))">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus">
<script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search">
<script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Euler's Formula for Complex Numbers</h1>
<p align="center"><i>(There is another "<a href="../geometry/eulers-formula.html">Euler's Formula</a>" about Geometry<b></b>,<br>
this page is about the one used in Complex Numbers)</i></p>
<p>First, you may have seen the famous "Euler's Identity":</p>
<p class="large center"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> + 1 = 0</p>
<p>It seems absolutely magical that such a neat equation combines:</p>
<div class="bigul">
<ul>
<li><b><i>e</i></b> (<a href="../numbers/e-eulers-number.html">Euler's Number</a>)</li>
<li><b><i>i</i></b> (the unit <a href="../numbers/imaginary-numbers.html">imaginary number</a>)</li>
<li><span class="times">π</span> (the famous number <a href="../numbers/pi.html">pi</a> that turns up in many interesting areas)</li>
<li>1 (the first counting number)</li>
<li>0 (<a href="../numbers/zero.html">zero</a>)</li>
</ul>
</div>
<p>And also has the basic operations of add, multiply, and an exponent too!</p>
<p>But if you want to take an interesting trip through mathematics, you will discover how it comes about.</p>
<p>Interested? Read on!</p>
<h2>Discovery</h2>
<p>It was around 1740, and mathematicians were interested in <a href="../numbers/imaginary-numbers.html">imaginary</a> numbers. </p>
<div class="center80">
<p>An imaginary number, when squared gives a negative result</p>
<p class="center"><img src="../numbers/images/imaginary-squared.svg" alt="imaginary squared is negative"></p>
<p>This is normally impossible (try squaring some numbers, remembering that <a href="../multiplying-negatives.html">multiplying negatives gives a positive</a>, and see if you can get a negative result), but just imagine that you can do it!</p>
<p>And we can have this special number (called <i><b>i</b></i> for imaginary):</p>
<p class="center"><span class="large"><b><i>i</i><sup>2</sup> = 1</b></span></p>
</div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/euler.jpg" alt="Leonhard Euler" height="160" width="150"></p>
<p>&nbsp;</p>
<p>Leonhard Euler was enjoying himself one day, playing with imaginary numbers (or so I imagine!), and he took this well known <a href="taylor-series.html">Taylor Series</a> (read about those, they are fascinating):</p>
<p class="center larger"><i>e</i><sup>x</sup> = 1 + x + <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> + <span class="intbl"><em>x<sup>5</sup></em><strong>5!</strong></span> + ...</p>
<div style="clear:both"></div>
<p>And he put <i><b>i</b></i> into it:</p>
<p class="center larger"><i>e</i><sup>ix</sup> = 1 + ix + <span class="intbl"><em>(ix)<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>(ix)<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>(ix)<sup>4</sup></em><strong>4!</strong></span> + <span class="intbl"><em>(ix)<sup>5</sup></em><strong>5!</strong></span> + ...</p>
<p>&nbsp;</p>
<p>And because <b>i<sup>2</sup> = 1</b>, it simplifies to:</p>
<p class="center larger"><i>e</i><sup>ix</sup> = 1 + ix <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> <span class="intbl"><em>ix<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> + <span class="intbl"><em>ix<sup>5</sup></em><strong>5!</strong></span> ...</p>
<p>&nbsp;</p>
<p>Now group all the <i><b>i</b></i> terms at the end:</p>
<p class="center larger"><i>e</i><sup>ix</sup> = ( 1 <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> ... ) &nbsp;+&nbsp; i( x <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>5</sup></em><strong>5!</strong></span> ... )</p>
<p>&nbsp;</p>
<p>And here is the miracle ... the two groups are actually the Taylor Series for <b>cos</b> and <b>sin</b>:</p>
<table align="center" border="0">
<tbody>
<tr>
<td class="larger" align="center"><b>cos x</b> = 1 <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> ...</td>
</tr>
<tr>
<td class="larger" align="center"><b>sin x</b> = x <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>5</sup></em><strong>5!</strong></span> ...</td>
</tr>
</tbody></table>
<p>And so it simplifies to:</p>
<div class="def">
<p class="large center"><i>e</i><sup><i><b>i</b></i>x</sup> = cos x + <i><b>i</b></i> sin x</p>
</div>
<p>He must have been so happy when he discovered this!</p>
<p>And it is now called <b>Euler's Formula</b>.</p>
<p>&nbsp;</p>
<p>Let's give it a try:</p>
<div class="example">
<h3>Example: when x = 1.1</h3>
<div class="so"><i>e</i><sup><i><b>i</b></i>x</sup> = cos x + <i><b>i</b></i> sin x</div>
<div class="so"><i>e</i><sup><i><b>1.1i</b></i></sup> = cos 1.1 + <i><b>i</b></i> sin 1.1</div>
<div class="so"><i>e</i><sup><i><b>1.1i</b></i></sup> = 0.45 + 0.89 <i><b>i</b></i> &nbsp; (to 2 decimals)</div>
<p>Note: we are using <a href="../geometry/radians.html">radians</a>, not degrees.</p>
</div>
<p>The answer is a combination of a Real and an Imaginary Number, which together is called a <a href="../numbers/complex-numbers.html">Complex Number</a>.</p>
<p>We can plot such a number on the <a href="complex-plane.html">complex plane</a> (the real numbers go left-right, and the imaginary numbers go up-down):</p>
<p class="center"><img src="images/complex-plane-45-89.svg" alt="graph real imaginary 0.45 + 0.89i"><br>
Here we show the number <b>0.45 + 0.89 <i><b>i</b></i></b><br>
<br>
Which is the same as <b><i>e</i><sup><i>1.1i</i></sup></b> </p>
<p>Let's plot some more!</p>
<p class="center"><img src="images/complex-plane-many.svg" alt="graph real imaginary many e^ix values"></p>
<h2>A Circle!</h2>
<p>Yes, putting Euler's Formula on that graph produces a circle:</p>
<p class="center"><img src="images/euler-formula-circle.svg" alt="e^ix = cos(x) + i sin(x) on circle"><i><br>
<b>e</b></i><b><sup><i>i</i>x</sup></b> produces a circle of radius 1<br>
</p>
<p>&nbsp;</p>
<p>And when we include a radius of <b>r</b> we can turn any point (such as <b>3 + 4i</b>) into <i><b>re</b></i><b><sup><i>i</i>x</sup></b> form by finding the correct value of <b>x</b> and <b> r</b>:</p>
<div class="example">
<h3>Example: the number <span class="center"><b>3 + 4i</b></span></h3>
<p>To turn <b>3 + 4i</b> into <i><b>re</b></i><b><sup><i>i</i>x</sup></b> form we do a <a href="../polar-cartesian-coordinates.html">Cartesian to Polar conversion</a>:</p>
<ul>
<li>r = √(3<sup>2</sup> + 4<sup>2</sup>) = √(9+16) = √25 = <b>5</b></li>
<li>x = tan<sup>-1</sup> ( 4 / 3 ) =<b> 0.927</b> (to 3 decimals)</li>
</ul>
<p class="larger">&nbsp;</p>
<p class="larger">So <b>3 + 4i</b> can also be <b>5<i>e</i><sup>0.927 <i>i</i></sup></b></p>
<p class="center"><img src="images/euler-formula-3-4i.svg" alt="3+4i = 5 at 0.927"></p>
</div>
<h2>It is Another Form</h2>
<p>It is basically another way of having a complex number. </p>
<p>This turns out to very useful, as there are many cases (such as multiplication) where it is easier to use the <i><b>re</b></i><b><sup><i>i</i>x</sup></b> form rather than the <b>a+bi</b> form.</p>
<h2>Plotting <i>e</i><sup><b>i</b><span class="times">π</span></sup></h2>
<p>Lastly, when we calculate Euler's Formula for x = <span class="times">π</span> we get:</p>
<div class="so"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> = cos <span class="times">π</span> + <i><b>i</b></i> sin <span class="times">π</span></div>
<div class="so"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> = 1<span class="times"></span> + <i><b>i</b></i> × 0 &nbsp;<i> (because cos <span class="times">π</span> = 1 and sin <span class="times">π</span> = 0) </i></div>
<div class="so"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> = 1</div>
<p>And here is the point created by <span class="center larger"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup></span> (where our discussion began):</p>
<p class="center larger"><img src="images/euler-formula-circle-pi.svg" alt="e^ipi = -1 + i on circle"></p>
<p>And <i><b>e</b></i><b><sup><i>i</i><span class="times">π</span></sup> = 1</b> can be rearranged into:</p>
<p class="large center"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> + 1 = 0 </p>
<p class="center"><i>The famous Euler's Identity.</i></p>
<p>&nbsp;</p>
<div class="fun">
<p>Footnote: in fact all these are true: </p>
<p class="center larger"><img src="images/euler-formula-circle-idents.svg" alt="e^ipi = -1 + i on circle"></p>
</div>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(8893, 8894, 8895, 8896, 8897, 8898, 8899, 8900, 8901, 8902);</script>&nbsp;
</div>
<div class="related">
<a href="../numbers/e-eulers-number.html">e (Euler's Number)</a>
<a href="index.html">Algebra
Index</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright © 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/eulers-formula.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:30 GMT -->
</html>