Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

312 lines
17 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/physics/relativity.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:51:48 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Introduction to Relativity</title>
<meta name="description" content="There is no central reference point in the Universe. So we can only measure speed relative to something." />
<script language="JavaScript" type="text/javascript">reSpell=[["meters","metres"],["traveled","travelled"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Relativity Introduction</h1>
<p>First, a little story:</p>
<div class="fun">
<p>Alex and Sam are two immortal super-beings</p>
<p>Alex: Hey Sam, I am going to create an elegant Universe.</p>
<p>Sam: Sounds cool. How does it begin?</p>
<p>Alex: I will make it expand from a point.</p>
<p>Sam: So ... two types of point then? One central point and all the other points? Not very elegant. And does it expand into already created space?</p>
<p>Alex: Darn.</p>
<p><i>(...some time later...)</i></p>
<p>Alex: Hey Sam, I've figured it out. It is <b>space itself</b> that will expand.</p>
<p>Sam: Right, so everything just gets pulled apart, and all points have the same properties.</p>
<p>Alex: Yes. And things can move around inside the space making wonderful patterns.</p>
<p>Sam: And this all happens instantly?</p>
<p>Alex: I thought about that. I will set a maximum speed inside space. And time will just happen. It is going to be cool.</p>
</div>
<p>Now, let's learn about our (real) Universe!</p>
<h2>Relative</h2>
<p>There is no &quot;central reference point&quot; in the Universe. So we can only measure speed <b>relative</b> to us or something else.</p>
<div class="example">
<h3>Example: when we say a car is going 100 km/h (about 60 mph) we mean <b>relative to the ground</b></h3>
<p>But think about this:</p>
<ul>
<li>The Earth spins on its axis at 1670 km/h at the equator</li>
<li>The Earth orbits the Sun at 30 km/s</li>
<li>The Sun moves around the Galaxy at 220 km/s</li>
<li>Our Galaxy is moving relative to local galaxies at about 300 km/s</li>
</ul>
<p>But we don't notice any of that.</p>
<p>We only notice relative speeds.</p>
</div>
<div class="example">
<h3>Example: you are in a moving Train.</h3>
<p class="center"><img src="images/train-table-tennis.svg" alt="playing table tennis in a train" height="125" width="398" ></p>
<p>Have a game of table tennis!</p>
<p>The ball bounces back and forth just like you were at home.</p>
<p>If there were no windows, and the train was running on&nbsp;a smooth track there is actually no way you could tell how fast you were going&nbsp;in relation to the ground.</p>
</div>
<div class="def">
<p class="center larger">The laws of Physics are not affected by your <b>speed</b>.</p>
</div>
<p>(Imagine how weird it would be if light, electricity, magnetism behaved differently at different speeds!)</p>
<h2>Speed of Light</h2>
<p>Light travels at almost <b>300,000,000 meters per second</b> (to be exact: 299,792,458&nbsp;meters per second) in a vacuum. That speed is called <b>c</b>.</p>
<p class="large center">c = speed of light in a vacuum</p>
<p>And <b>c</b> is the same in all directions!</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/earth-orbit-speed-light.svg" alt="earth orbit speed of light" height="175" width="236" ></p>
<p>&nbsp;</p>
<p>The MichelsonMorley experiment in 1887 measured the speed of light &quot;forward&quot; and &quot;backward&quot; of Earth's orbit and found <b>no difference</b>. Despite Earth moving quite fast through space.</p>
<p>It was a surprise at the time.</p>
<p>So the <b>speed of light is constant</b> and is not affected by any relative speed.</p>
<p class="large center">c is the same for all observers, <span class="large">independent of the motion of the source</span>!</p>
<div style="clear:both"></div>
<p>So, if I zoom towards you at 0.9c and shine a light ahead of me:</p> <p><img src="images/relativity-towards.svg" alt="earth orbit speed of light" height="150" width="369" ></p>
<ul>
<li>I will see the light moving at <b>c</b></li>
<li>You will <b>also</b> see the light moving at <b>c</b> (not 1.9c)</li>
</ul>
<p>You might think we should add <b>c</b> and <b>0.9c</b> together to get 1.9c, but the Universe does not work like that. Many, many experiments have proven that.</p>
<p>(We are talking speed here, <b>no acceleration</b>. Technically it is called an &quot;inertial frame&quot;.)</p>
<h2>A Moving Box</h2>
<p>To learn how this works, imagine you are <b>inside</b> a moving box.</p>
<p>You measure the time it takes light to go from a torch to a detector, and get the answer <b>t</b></p>
<p class="center"><img src="images/relativity-light.svg" alt="relativity and speed of light" height="310" width="360" ></p>
<p>But the box is <b>moving past someone else</b> at speed <b>v</b>. They also measures how long the light takes.</p>
<p>They see the light take a <b>longer (slanted) path</b>, BUT it still travels at the speed of light, so it <b>must take more time</b>, and they measure time <b>r</b></p>
<ul>
<li><b>t</b> is the time for you, the <b>inside</b> observer</li>
<li><b>r</b> is the time for them, the <b>outside</b> observer</li>
</ul>
<p><i>That is the key point. Having <b>c</b> the same for everyone means that time can be different.</i></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Having accepted this, let us do some mathematics! What are the distances?</p>
<ul>
<li>The distance for the <b>inside</b> observer is the time t by the speed of light: <b>ct</b></li>
<li>The distance for the <b>outside</b> observer is the time r by the speed of light: <b>cr</b></li>
<li>And the <b>outside</b> observer sees the box move this far: <b>vr</b></li>
</ul>
<p>So these are the distances:</p>
<p class="center"><img src="images/relativity-distances.svg" alt="relativity and speed of light" height="310" width="360" ></p>
<p>Which we can put into one diagram like this:</p>
<p class="center"><img src="images/relativity-triangle.svg" alt="relativity and speed of light" height="150" width="125" ></p>
<p>It is a right-angled triangle that we can solve using <a href="../pythagoras.html">Pythagoras formula</a>:</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">(cr)<sup>2</sup> = (vr)<sup>2</sup> + (ct)<sup>2</sup></span></div>
<div class="row"><span class="left">Move (vr)<sup>2</sup> to left:</span><span class="right">(cr)<sup>2</sup> &minus; (vr)<sup>2</sup> = (ct)<sup>2</sup></span></div>
<div class="row"><span class="left"> (ab)<sup>2</sup> = a<sup>2</sup>b<sup>2</sup>:</span><span class="right">c<sup>2</sup>r<sup>2</sup> &minus; v<sup>2</sup>r<sup>2</sup> = c<sup>2</sup>t<sup>2</sup></span></div>
<div class="row"><span class="left"> Simplify left:</span><span class="right">r<sup>2</sup>(c<sup>2</sup>&minus;v<sup>2</sup>) = c<sup>2</sup>t<sup>2</sup></span></div>
<div class="row"><span class="left"> Divide by c<sup>2</sup>&minus;v<sup>2</sup>:</span><span class="right">r<sup>2</sup> = <span class="intbl"><em>c<sup>2</sup>t<sup>2</sup></em><strong>c<sup>2</sup>&minus;v<sup>2</sup></strong></span></span></div>
<div class="row"><span class="left">Simplify right:</span><span class="right">r<sup>2</sup> = <span class="intbl"><em>t<sup>2</sup></em><strong>1&minus;v<sup>2</sup>/c<sup>2</sup></strong></span></span></div>
<div class="row"><span class="left">Square root:</span><span class="right">r = t&nbsp;<span class="intbl"><em>1</em><strong>&radic;(1&minus;v<sup>2</sup>/c<sup>2</sup>)</strong></span></span></div>
</div>
<p>So now we can calculate how much time for an outside observer (r) compared to an inside observer (t).</p>
<p>That last term is so important it gets called gamma (the Greek letter <span class="large">&gamma;</span>) or &quot;the Lorentz factor&quot;:</p>
<p class="center large">&gamma; = <span class="intbl"><em>1</em><strong>&radic;(1&minus;v<sup>2</sup>/c<sup>2</sup>)</strong></span></p>
<div class="def">
<p class="larger">That increase in time that an outside observer experiences is called &quot;Time Dilation&quot;, dilation means getting larger.</p>
</div>
<h2>Gamma Examples</h2>
<p>Here are some <span class="large">&gamma;</span> values for different speeds (you can do the calculations yourself, but will need the <a href="../calculator-precision.html">Full Precision Calculator</a>):</p>
<p class="center"><i>Remember that <b>c</b> is about 300,000,000 m/s</i></p>
<h3>Highway speed of 100 km/h (28 m/s): &gamma; = 1.000 000 000 000 004 29...</h3>
<p>There are 14 zeros in there, so almost exactly 1. That is why we never notice these time effects at the speeds we normally go at.</p>
<h3>Jet speed of 2,000 km/h (556 m/s): &gamma; = 1.000 000 000 001 72...</h3>
<p>So even at jet speed there are 11 zeros in there.</p>
<h3>GPS satellite orbit speed of 14,000 km/h (&asymp;4000 m/s): &gamma; = 1.000 000 000 084 1...</h3>
<p>Still almost exactly 1. A clock on a satellite would be affected by about:</p>
<p class="center">0.0000000000841&times;24&times;60&times;60 = 0.000 007 seconds every day</p>
<p>That is <b>7000 nanoseconds</b>, but GPS needs about 20 nanoseconds accuracy, so we actually <b>need relativity calculations to make GPS work</b>. (Note: there is also a gravity effect, but we are not looking at that here)</p>
<h3>10% of the speed of light: &gamma; = 1.005...</h3>
<p>Even going at 10% the speed of light (about <b>100 million km/h</b>) there is only a .005 difference</p>
<h3>50% of the speed of light: &gamma; = 1.155...</h3>
<h3>90% of the speed of light: &gamma; = 2.294...</h3>
<h3>99% of the speed of light: &gamma; = 7.089...</h3>
<p>At 99% of the speed of light, for every <b>day inside</b> the box someone outside experiences <b>a week</b>.</p>
<p>In the style of the triangle we saw earlier it looks like this:</p>
<p class="center"><img src="images/relativity-triangle-7.svg" alt="relativity and speed of light" height="65" width="422" ></p>
<p>You can check for yourself: does <b>1<sup>2</sup> = 0.99<sup>2</sup> + 0.141<sup>2</sup></b> ?</p>
<h3>99.9% of the speed of light: &gamma; = 22.4...</h3>
<div class="example">
<h3>Example: Muons</h3>
<p>Muons are special particles with a half of life of only 2.2 microseconds. Light travels only 700 meters in that time.</p>
<p>But we get lots of muons from the upper atmosphere, thousands of meters away!</p>
<p><b>Why?</b></p>
<p>Because they are moving so close to the speed of light that <b>gamma is about 20</b></p>
<p>So for them <b>2 microseconds</b> have passed, but as outside observers we see about <b>40 microseconds</b> passing, which is enough time for them to go about 14,000 m</p>
<p>Another demonstration of relativity.</p>
</div>
<p>&nbsp;</p>
<h2>Adding and Subtracting Relative Velocities</h2>
<p>So, how <b>do</b> we add velocities, then?</p>
<p>For speeds that we normally experience it is OK to just add them, you won't notice anything wrong.</p>
<p>But for very fast speeds we need to think of relativity.</p>
<p>In the case of velocities heading in the same direction we can use this fomula:</p>
<p class="center large">v<sub>new</sub> = <span class="intbl"><em>v<sub>1</sub> + v<sub>2</sub></em><strong>1 + v<sub>1</sub>v<sub>2</sub>/c<sup>2</sup></strong></span></p>
<div class="example">
<h3>Example: A spaceship going at 0.6c launches a rocket (relative to it) at 0.5c, what does an outside observer see?<br>
<img src="images/relativity-add.svg" alt="rocket launches rocket" height="127" width="459" ></h3>
<p>&nbsp;</p>
<p>Let's use the formula above:</p>
<p class="center large">v<sub>new</sub> = <span class="intbl"><em>0.6 + 0.5</em><strong>1 + 0.6&times;0.5/1<sup>2</sup></strong></span></p>
<p class="center large">v<sub>new</sub> = <span class="intbl"><em>1.1</em><strong>1 + 0.3</strong></span></p>
<p class="center large">v<sub>new</sub> = 0.846...</p>
<p>The two speeds combine to make 85% of the speed of light. Neat, huh?</p>
</div>
<div class="example">
<h3>Example: Earlier we looked at this:<br>
<img src="images/relativity-towards.svg" alt="earth orbit speed of light" height="150" width="369" ><br>
What <b>does</b> happen when we add 0.9c to c?</h3>
<p>Let's use the formula above:</p>
<p class="center large">v<sub>new</sub> = <span class="intbl"><em>0.9 + 1</em><strong>1 + 0.9&times;1/1<sup>2</sup></strong></span></p>
<p class="center large">v<sub>new</sub> = <span class="intbl"><em>1.9</em><strong>1 + 0.9</strong></span></p>
<p class="center large">v<sub>new</sub> = 1</p>
<p>So the outside observer sees the combined speed of <b>0.9c</b> and <b>c</b> as exactly <b>c</b></p>
<p>So we never get above c</p>
</div>
<h2>Mysterious?</h2>
<p>This may seem strange, but not really mysterious. It is just a direct result of the speed of light being a constant for all observers.</p>
<p>The strangeness is likely because in our everyday world we never have to deal with it. Maybe if the speed of light was only 100 km/h we would have a better &quot;feel&quot; for it?</p>
<p>&nbsp;</p>
<h2>Footnotes</h2>
<p>That was an introduction into &quot;Special Relativity&quot; which does not include any effects of acceleration or gravity.</p>
<p>Albert Einstein released his special theory of relativity in 1905, but it took until 1915 for him to release his <b>general</b> theory of relativity that does include the effects of gravity.</p>
<p>&nbsp;</p>
<p>Note also that when we mention the speed of light, or <b>c</b>, please remember:</p>
<div class="def">
<p>Light <b>only travels that speed in a vacuum</b>!</p>
<p>It can travel <i>slower</i>, read more at <a href="light.html">Light</a>.</p>
</div>
<p>And even though it is called the speed of <b>light</b>, it applies to the whole <a href="electromagnetic-spectrum.html">Electromagnetic Spectrum</a>, <a href="gravity.html">Gravity</a> Waves and more (basically any particle without mass).</p>
<p>&nbsp;</p>
<p>And remember: we all experience the same laws of physics.</p>
<h2>Faster than c?</h2>
<p>Space can expand faster than c, but as far as we know <b>no wave/particle can go faster than c</b>.</p>
<div class="fun">
<p>Except for this <b>fictional</b> lady:</p>
<p style="padding: 0 0 0 20px;"><i>There was a young lady named Bright<br>
who traveled much faster than light.<br>
She set out one day<br>
in a relative way,<br>
and came back the previous night.</i></p>
</div>
<p>&nbsp;</p>
<div class="questions">17776, 17777, 17778, 17779, 17770, 17771, 17772, 17773, 17774, 17775</div>
<div class="related">
<a href="index.html">Physics Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/physics/relativity.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:51:54 GMT -->
</html>