lkarch.org/tools/mathisfun/www.mathsisfun.com/numbers/transcendental-numbers.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

189 lines
9.1 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/transcendental-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:03 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Transcendental Numbers</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Transcendental Numbers</h1>
<h2>Transcendental Number</h2>
<p>A Transcendental Number is any number that is <b>not</b> an <a href="algebraic-numbers.html">Algebraic Number</a></p>
<p>Examples of transcendental numbers include <a href="pi.html"><span class="times">π</span> (Pi)</a> and <i><a href="e-eulers-number.html">e (Euler's number)</a></i>.</p>
<h2>Algebraic Number</h2>
<p>What then is an Algebraic Number?</p>
<div class="center80">
<p><b> Put simply</b>, when we have a polynomial equation like (for example)</p>
<p></p>
<h3 align="center">2x<sup>2</sup> 4x + 3 = 0</h3>
<p>whose coefficients (the numbers 2, 4 and 3) are rational (whole numbers or simple fractions) ...</p>
<p class="center">... then <b>x</b> is <b>Algebraic</b>.<br> (Read <a href="algebraic-numbers.html">Algebraic Numbers</a> for full details).</p>
</div>
<p>We can imagine all kinds of polynomials:</p>
<ul>
<li><b>x 1 = 0</b> has x = <b>1</b>,</li>
<li><b>x + 1 = 0</b> has x = <b></b><b>1</b>,</li>
<li><b>2x 1 = 0</b> has x = <b>½</b>,</li>
<li><b>x<sup>2 </sup> 2 = 0</b> has x = <b>√2</b>,</li>
<li>and so on</li>
</ul>
<p>All <a href="../whole-numbers.html">integers</a>, all <a href="../rational-numbers.html">rational numbers</a>, some <a href="../irrational-numbers.html">irrational numbers</a> (such as √2) are Algebraic.</p>
<p>In fact it is hard to think of a number that is <b>not</b> Algebraic.</p>
<p>But they do exist! And lots of them!</p>
<div class="center80">
<p style="float:right; margin: 0 0 5px 10px;"><b><img src="../algebra/images/euler.jpg" alt="Euler" height="160" width="150">
</b></p>
<p><b>They transcend the power of algebraic methods.</b></p>
<p><i>- Leonhard Euler</i></p>
</div>
<h2>Liouville Numbers</h2>
<p>Back in 1844, <i>Joseph Liouville</i> came up with this number:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/liouville-constant.png" alt="liouville constant" height="50" width="73"></td>
<td><b>= 0.11000100000000000000000100……</b></td>
</tr>
<tr>
<td>&nbsp;</td>
<td>(the digit is 1 if it is k! places after the decimal, and 0 otherwise.)</td>
</tr>
</tbody></table>
<p>It is a very interesting number because:</p>
<ul>
<li>it is <a href="../irrational-numbers.html">irrational</a>, and</li>
<li>it is <i>not the root of any polynomial equation</i> and so is <b>not algebraic</b>.</li>
</ul>
<p>In fact, Joseph Liouville had successfully made the first provable <b>Transcendental Number</b>.</p>
<p>That number is now known as the <b>Liouville Constant</b>. and is in the class of <b>Liouville Numbers</b>.</p>
<h2>More Transcendental Numbers</h2>
<p>It took until 1873 for the first "non-constructed" number to be proved as transcendental when Charles Hermite proved that <i><b>e</b></i> (<a href="e-eulers-number.html">Euler's number</a>) is transcendental.</p>
<p>Then in 1882, Ferdinand von Lindemann proved that <span class="times">π</span> (<a href="pi.html">pi</a>) is transcendental.</p>
<p>In fact, proving that a number is Transcendental is quite difficult, even though they are known to be very common ...</p>
<h2>Transcendental Numbers are Common</h2>
<p>Most real numbers are transcendental. The argument for this is:</p>
<ul>
<li>The Algebraic Numbers are "countable" (put simply, the list of <a href="../whole-numbers.html">whole numbers</a> is "countable", and we can arrange the algebraic numbers in a 1-to-1 manner with whole numbers, so they are also countable.)</li>
<li>But the Real numbers are "Uncountable".</li>
<li>And since a Real number is either Algebraic or Transcendental, the Transcendentals must be "Uncountable".</li>
<li>So there are many more Transcendentals than Algebraics.</li>
</ul>
<p>The same argument applies to <a href="complex-numbers.html">complex numbers</a>.</p>
<h2>Transcendental Function</h2>
<p>In a similar way that a Transcendental Number is "not algebraic", so a Transcendental Function is also "not algebraic".</p>
<p>More formally, a transcendental function is a function that cannot be constructed in a finite number of steps from the elementary functions and their inverses.</p>
<p>An example of a Transcendental Function is the <a href="../sine-cosine-tangent.html">sine function</a> <b>sin(x)</b>.</p>
<p>&nbsp;</p>
<div class="fun">
<p><b>Q:</b> Why didn't the mathematicians use their teeth?</p>
<p><b>A:</b> They wanted to transcend dental functions.</p>
</div>
<p>&nbsp;</p>
<div class="beach">
<table>
<tbody>
<tr>
<td>
<h3>Footnote: More about Liouville Numbers</h3>
<p>A <b>Liouville Number</b> is a special type of transcendental number which can be <i>very closely approximated</i> by rational numbers.</p>
<p>More formally a <b>Liouville Number</b> is a real number <i><b>x</b></i>, with the property that, for any positive integer <i><b>n</b></i>, there exist integers <i><b>p</b></i> and<i><b> q</b></i> (with <i><b>q</b></i>&gt;1) such that:</p>
<p class="center"><img src="images/liouville-inequality.png" alt="liouville inequality" height="47" width="147"></p>
<p>Now we know that <i><b>x</b></i> is irrational, so there will always be a difference between x and any p/q: so we get the "0&lt;" part.</p>
<p>But the second inequality shows us how small the difference is. In fact the inequality is saying "the number can be approximated infinitely close, but never quite getting there". In fact Liouville managed to show that if a number has a rapidly converging series of rational approximations then it is transcendental.</p>
<p>Another interesting property is that for any positive integer n, there exist an infinite number of pairs of integers (p,q) obeying the above inequality.</p></td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<div class="related">
<a href="algebraic-numbers.html">Algebraic Numbers</a>
<a href="../algebra/definitions.html">Basic Definitions in Algebra</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/transcendental-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:03 GMT -->
</html>