Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

441 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/complex-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:19 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Complex Numbers</title>
<script language="JavaScript" type="text/javascript">reSpell = [["color", "colour"],["center", "centre"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Complex Numbers</h1>
<p class="center"><img src="images/complex-example.svg" alt="complex example 7 + 3i" height="58" width="157"> <i><br>
A Complex Number</i></p>
<div class="def">
<p class="center">A Complex Number is a combination of a<br>
<b>Real Number</b> and an <b>Imaginary Number</b></p>
</div>
<p class="larger">&nbsp;</p>
<div class="words">
<p class="large"><a href="real-numbers.html">Real Numbers</a> are numbers like:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td class="large" width="80">1</td>
<td class="large" width="80">12.38</td>
<td class="large" width="80">0.8625</td>
<td class="large" width="80">3/4</td>
<td class="large" width="80">√2</td>
<td class="large" width="80">1998</td>
</tr>
</tbody></table>
</div>
<p>Nearly any number you can think of is a Real Number!</p>
</div>
<div class="words">
<p class="large"><a href="imaginary-numbers.html">Imaginary Numbers</a> when <b>squared</b> give a <b>negative</b> result.</p>
<p>Normally this doesn't happen, because:</p>
<ul>
<li>when we <a href="../square-root.html">square</a> a positive number we get a positive result, and</li>
<li>when we square a negative number we also get a positive result (because <a href="../multiplying-negatives.html">a negative times a negative gives a positive</a>), for example <b>2 × 2 = +4</b></li>
</ul>
<p>But just imagine such numbers exist, because we want them.</p>
</div>
<p>Let's talk some more about imaginary numbers ...</p>
<div class="def">
<p>The "unit" imaginary number (like <span class="large">1</span> for Real Numbers) is <span class="large">i</span>, which is the square root of 1</p>
<div class="center"><img src="images/imaginary-square-root.svg" alt="equals the square root of -1" height="44" width="135"></div>
<p>Because when we square <span class="large">i</span> we get <span class="large">1</span></p>
<p class="large center">i<sup>2</sup> = 1</p>
<p>Examples of Imaginary Numbers:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td class="large" width="80">3i</td>
<td class="large" width="80">1.04i</td>
<td class="large" width="80">2.8i</td>
<td class="large" width="80">3i/4</td>
<td class="large" width="80">(√2)i</td>
<td class="large" width="80">1998i</td>
</tr>
</tbody></table>
</div>
<p>And we keep that little "i" there to remind us we need to multiply by √1</p></div>
<h2>Complex Numbers</h2>
<p>When we combine a Real Number and an Imaginary Number we get a <b>Complex Number</b>:</p>
<p class="center"><img src="images/complex-number.svg" alt="Complex Number" height="85" width="297"></p>
<h3>Examples:</h3>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td class="large" width="100">1 + i</td>
<td class="large" width="100">39 + 3i</td>
<td class="large" width="100">0.8 2.2i</td>
<td class="large" width="100">2 + <font face="Times New Roman, Times, serif" size="+2">π</font>i</td>
<td class="large" width="100">√2 + i/2</td>
</tr>
</tbody></table>
</div>
<p class="center">&nbsp;</p>
<div class="center80">
<h3>Can a Number be a Combination of Two Numbers?</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../images/fractions/pizza-3-8.svg" alt="pie 3/8" height="120" width="120"></p>
<p>Can we make up a number from two other numbers? Sure we can!</p>
<p>We do it with <a href="../fractions.html">fractions</a> all the time. The fraction <span class="frac-large"><sup>3</sup>/<sub>8</sub></span> is a number made up of a 3 and an 8. We know it means "3 of 8 equal parts".</p>
<p>Well, a Complex Number is just <b>two numbers added together</b> (a Real and an Imaginary Number).</p>
</div>
<h2>Either Part Can Be Zero</h2>
<p>So, a Complex Number has a real part and an imaginary part.</p>
<p>But either part can be <b>0</b>, so all Real Numbers and Imaginary Numbers are also Complex Numbers.</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th width="120">Complex Number</th>
<th width="120">Real Part</th>
<th width="120">Imaginary Part</th>
<th>&nbsp;</th>
</tr>
<tr style="text-align:center;">
<td style="width:120px;">3 + 2<span class="large">i</span></td>
<td style="width:120px;">3</td>
<td style="width:120px;">2</td>
<td>&nbsp;</td>
</tr>
<tr style="text-align:center;">
<td style="width:120px;">5</td>
<td style="width:120px;">5</td>
<td style="width:120px;"><b>0</b></td>
<td>Purely Real</td>
</tr>
<tr style="text-align:center;">
<td style="width:120px;">6i</td>
<td style="width:120px;"><b>0</b></td>
<td style="width:120px;">6</td>
<td>Purely Imaginary</td>
</tr>
</tbody></table>
</div>
<h2>Complicated?</h2>
<div class="words">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/building-complex.jpg" alt="building complex" height="151" width="150"></p>
<p>Complex does <b>not</b> mean complicated.</p>
<p>It means the two types of numbers, real and imaginary, together form a <b>complex</b>, just like a building complex (buildings joined together).</p>
</div>
<h2>A Visual Explanation</h2>
<p>You know how the number line goes <b>left-right</b>?</p>
<p>Well let's have the imaginary numbers go <b>up-down</b>:</p>
<p class="center"><img src="../algebra/images/complex-plane.svg" alt="complex plane" height="172" width="169"><br>
<br>
And we get the <a href="../algebra/complex-plane.html">Complex Plane</a></p>
<p>A complex number can now be shown as a point:</p>
<p class="center"><img src="../algebra/images/complex-plane-3-4i.svg" alt="complex plane 3+4i" height="179" width="179"><br>
The complex number 3 + 4<b>i</b></p>
<h2>Adding</h2>
<p>To add two complex numbers we add each part separately:</p>
<p class="center larger">(a+b<b>i</b>) + (c+d<b>i</b>) = (a+c) + (b+d)<b>i</b></p>
<div class="example">
<h3>Example: add the complex numbers <b>3 + 2<i>i</i></b> and <b>1 + 7<i>i</i></b></h3>
<ul>
<li>add the real numbers, and</li>
<li>add the imaginary numbers:</li>
</ul>
<p class="center">(3 + 2<span class="large">i</span>) + (1 + 7<span class="large">i</span>)<br>
= 3 + 1 + (2 + 7)<i><b>i</b></i><br>
= 4 + 9<span class="large">i</span></p>
</div>
<p>Let's try another:</p>
<div class="example">
<h3>Example: add the complex numbers <b>3 + 5<i>i</i></b> and <b>4 3<i>i</i></b></h3>
<p class="center">(3 + 5<i><b>i</b></i>) + (4 3<i><b>i</b></i>)<br>
= 3 + 4 + (5 3)<i><b>i</b></i><br>
= 7 + 2<i><b>i</b></i></p>
<p>On the complex plane it is:</p>
<p class="center"><img src="../algebra/images/complex-plane-vector-add.svg" alt="complex plane vector addition" height="187" width="236"></p>
</div>
<h2>Multiplying</h2>
<p>To multiply complex numbers:</p>
<p class="center"><b>Each part of the first complex number</b> gets multiplied by<br>
<b>each part of the second complex number</b></p>
<p>Just use "FOIL", which stands for "<b>F</b>irsts, <b>O</b>uters, <b>I</b>nners, <b>L</b>asts" (see <a href="../algebra/polynomials-multiplying.html">Binomial Multiplication</a> for more details):</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="../algebra/images/foil-complex.svg" alt="foil" height="133" width="238"></td>
<td>
<ul>
<li>Firsts: <b>a × c</b></li>
<li>Outers: <b>a × d<i>i</i></b></li>
<li>Inners: <b>b<i>i</i> × c</b></li>
<li>Lasts: <b>b<i>i</i> × d<i>i</i></b></li>
</ul></td>
</tr>
<tr style="text-align:center;">
<td colspan="2">
<p class="larger">(a+b<i><b>i</b></i>)(c+d<i><b>i</b></i>) = ac + ad<b><i>i</i></b> + bc<b><i>i</i></b> + bd<b><i>i</i><sup>2</sup></b></p></td>
</tr>
</tbody></table>
<p>Like this:</p>
<div class="example">
<h3>Example: (3 + 2<span class="large">i</span>)(1 + 7<span class="large">i</span>)</h3>
<div class="tbl">
<div class="row"><span class="left">(3 + 2<span class="large">i</span>)(1 + 7<span class="large">i</span>) </span><span class="rtlt">= 3×1 + 3×7<span class="large">i</span> + 2<span class="large">i</span>×1+ 2<span class="large">i</span>×7<span class="large">i</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 3 + 21<span class="large">i</span> + 2<span class="large">i</span> + 14<span class="large">i</span><sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 3 + 21<span class="large">i</span> + 2<span class="large">i</span> 14</span> &nbsp; (because i<sup>2</sup> = 1) </div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 11 + 23<span class="large">i</span></span></div>
</div>
</div>
<p>And this:</p>
<div class="example">
<h3>Example: (1 + <span class="large">i</span>)<sup>2</sup></h3>
<div class="tbl">
<div class="row"><span class="left"> (1 + <span class="large">i</span>)(1 + <span class="large">i</span>)</span><span class="rtlt">= 1×1 + 1×<span class="large">i</span> + 1×<span class="large">i</span> + <span class="large">i</span><sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 1 + 2<span class="large">i</span> 1 </span> &nbsp; (because i<sup>2</sup> = 1)</div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 0 + 2<span class="large">i</span></span></div>
</div>
</div>
<h3>But There is a Quicker Way!</h3>
<p>Use this rule:</p>
<p class="center"><span class="larger">(a+b<b>i</b>)(c+d<b>i</b>) = (acbd) + (ad+bc)<b>i</b></span></p>
<div class="example">
<p>Example: (3 + 2<span class="large">i</span>)(1 + 7<span class="large">i</span>) = (3×1 2×7) + (3×7 + 2×1)<span class="large">i</span> = 11 + 23<span class="large">i</span></p>
</div>
<h3>Why Does That Rule Work?</h3>
<p>It is just the "FOIL" method after a little work:</p>
<div class="tbl">
<div class="row"><span class="left">(a+b<b>i</b>)(c+d<b>i</b>) =</span><span class="right">ac + ad<b>i</b> + bc<b>i</b> + bd<b>i</b><sup>2</sup></span> &nbsp; FOIL method</div>
<div class="row"><span class="left">&nbsp;=</span><span class="right">ac + ad<b>i</b> + bc<b>i</b> bd</span> &nbsp; (because <b>i</b><sup>2 </sup>= 1)</div>
<div class="row"><span class="left">&nbsp;=</span><span class="right">(ac bd) + (ad + bc)<b>i</b></span> &nbsp; (gathering like terms)</div>
</div>
<p>And there we have the <span class="larger">(ac bd) + (ad + bc)<b>i</b> </span> &nbsp;pattern.</p>
<p>This rule is certainly faster, but if you forget it, just remember the FOIL method.</p>
<h3>Let us try <span class="large">i<sup>2</sup></span></h3>
<p>Just for fun, let's use the method to calculate<span class="large"> i<sup>2</sup></span></p>
<div class="example">
<h3>Example: i<sup>2</sup></h3>
<p>We can write <span class="large">i</span> with a real and imaginary part as <span class="large">0 + i</span></p>
<div class="tbl">
<div class="row"><span class="left">i<sup>2</sup></span><span class="rtlt">= (0 + i)<sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= (0 + i)(0 + i)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= (0×0 1×1) + (0×1 + 1×0)<b>i</b></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 1 + 0<b>i</b></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt"><span class="larger">= <b>1</b></span></span></div>
</div>
</div>
<p>And that agrees nicely with the definition that<span class="large"> i<sup>2 </sup>= 1</span></p>
<p>So it all works wonderfully!</p>
<p>Learn more at <a href="../algebra/complex-number-multiply.html">Complex Number Multiplication</a>.</p>
<h2>Conjugates</h2>
<p>We will need to know about conjugates in a minute!</p>
<p>A <a href="../algebra/conjugate.html">conjugate</a> is where we <b>change the sign in the middle</b> like this:</p>
<p class="center"><img src="images/complex-conjugate.svg" alt="Complex Conjugate" height="92" width="264"></p>
<p>A conjugate is often written with a bar over it:</p>
<div class="example">
<h3>Example:</h3>
<p class="center"><span style="border-top:1px solid black;">5 3<b>i</b></span> &nbsp; = &nbsp; 5 + 3<b>i</b></p>
</div>
<h2>Dividing</h2>
<p>The conjugate is used to help complex division.</p>
<p>The trick is to <b>multiply both top and bottom</b> by the<b> conjugate of the bottom</b>.</p>
<div class="example">
<h3>Example: Do this Division:</h3>
<p class="center larger"><span class="intbl"><em>2 + 3<b>i</b></em><strong><span class="larger">4 5<b>i</b></span></strong></span></p>
<p>Multiply top and bottom by the conjugate of <span class="larger">4 5<b>i</b></span> :<span class="larger"></span></p>
<p class="center large"><span class="intbl"><em>2 + 3<b>i</b></em><strong>4 5<b>i</b></strong></span>×<span class="intbl"><em>4 + 5<b>i</b></em><strong>4 + 5<b>i</b></strong></span>&nbsp; = &nbsp;<span class="intbl"><em>8 + 10<b>i</b> + 12<b>i</b> + 15<b>i</b><sup>2</sup></em><strong>16 + 20<b>i</b> 20<b>i</b> 25<b>i</b><sup>2</sup></strong></span></p>
<p>Now remember that <span class="larger">i<sup>2</sup> = 1</span>, so:</p>
<p class="center large">= &nbsp;<span class="intbl"><em>8 + 10<b>i</b> + 12<b>i</b> 15</em><strong>16 + 20<b>i</b> 20<b>i</b> + 25</strong></span></p>
<p>Add Like Terms (and notice how on the bottom <span class="larger">20<b>i</b> 20<b>i</b></span> cancels out!):</p>
<p class="center large">= &nbsp;<span class="intbl"><em>7 + 22<b>i</b></em><strong>41</strong></span></p>
<p>Lastly we should put the answer back into <span class="larger">a + b<b>i</b></span> form:</p>
<p class="center larger">= &nbsp;<span class="intbl"><em>7 </em><strong><span class="larger">41</span></strong></span> + <span class="intbl"><em>22</em><strong><span class="larger">41</span></strong></span><b>i</b></p>
<p>DONE!</p>
</div>
<p>Yes, there is a bit of calculation to do. But it <b>can</b> be done.</p>
<h2>Multiplying By the Conjugate</h2>
<p>There is a faster way though.</p>
<p>In the previous example, what happened on the bottom was interesting:</p>
<p class="center large">(4 5<b>i</b>)(4 + 5<b>i</b>) = 16 + 20<b>i</b> 20<b>i</b> 25<b>i</b><sup>2</sup></p>
<p>The middle terms (20<b>i</b> 20<b>i</b>) cancel out:</p>
<p class="center large">(4 5<b>i</b>)(4 + 5<b>i</b>) = 16 25<b>i</b><sup>2</sup></p>
<p>Also <span class="larger"><b>i</b><sup>2</sup> = 1</span> :</p>
<p class="center large">(4 5<b>i</b>)(4 + 5<b>i</b>) = 16 + 25</p>
<p>And 16 and 25 are (magically) squares of the 4 and 5:</p>
<p class="center large">(4 5<b>i</b>)(4 + 5<b>i</b>) = 4<sup>2</sup> + 5<sup>2</sup></p>
<p>Which is really quite a simple result. The general rule is:</p>
<div class="def">
<p class="center"><span class="larger">(a + b<b>i</b>)(a b<b>i</b>) = a<sup>2</sup></span><span class="larger"> + b<sup>2</sup></span></p>
</div>
<p>That can save us time when we do division, like this:</p>
<div class="example">
<h3>Example: Let's try this again</h3>
<p class="center larger"><span class="intbl"><em>2 + 3<b>i</b></em><strong><span class="larger">4 5<b>i</b></span></strong></span></p>
<p>Multiply top and bottom by the conjugate of <span class="larger">4 5<b>i</b></span> :<span class="larger"></span></p>
<p class="center large"><span class="intbl"><em>2 + 3<b>i</b></em><strong>4 5<b>i</b></strong></span> × <span class="intbl"><em>4 + 5<b>i</b></em><strong>4 + 5<b>i</b></strong></span>&nbsp; = &nbsp;<span class="intbl"><em>8 + 10<b>i</b> + 12<b>i</b> + 15<b>i</b><sup>2</sup></em><strong>16 + 25</strong></span></p>
<p class="center large">= &nbsp;<span class="intbl"><em>7 + 22<b>i</b></em><strong>41</strong></span></p>
<p>And then back into <span class="larger">a + b<b>i</b></span> form:</p>
<p class="center larger">= &nbsp;<span class="intbl"><em>7 </em><strong><span class="larger">41</span></strong></span> + <span class="intbl"><em>22</em><strong><span class="larger">41</span></strong></span><b>i</b></p>
<p>DONE!</p>
</div>
<p>&nbsp;</p>
<h2>Notation</h2>
<p>We often use <b>z</b> for a complex number. And <b>Re()</b> for the real part and <b>Im()</b> for the imaginary part, like this:</p>
<p class="center"><img src="images/complex-re-im.svg" alt="Complex Number Re() and Im()" height="85" width="180"></p>
<p>Which looks like this on the complex plane:</p>
<p class="center"><img src="../algebra/images/complex-plane-z-example.svg" alt="complex plane z example" height="187" width="236"></p>
<p>&nbsp;</p>
<h2>The Mandelbrot Set</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/mandelbrot-set.jpg" alt="Mandelbrot Set" height="225" width="300"></td>
<td>
<p>The beautiful <a href="mandelbrot.html">Mandelbrot Set</a> (pictured here) is based on Complex Numbers.</p>
<p>It is a plot of what happens when we take the simple equation <b>z</b><sup>2</sup>+<b>c</b> (both complex numbers) and feed the result back into <b>z</b> time and time again.</p>
<p>The color shows how fast <b>z</b><sup>2</sup>+<b>c</b> grows, and black means it stays within a certain range.</p></td>
</tr>
<tr>
<td style="text-align:right;">
<p>Here is an image made by zooming into the Mandelbrot set</p></td>
<td><img src="images/mandelbroot-zoom-a.jpg" alt="Mandelbrot Set Zoomed In" height="224" width="300"></td>
</tr>
<tr>
<td style="text-align:right;">And here is the center of the previous one zoomed in even further:</td>
<td><img src="images/mandelbroot-zoom-b.jpg" alt="Mandelbrot Set Zoomed In More" height="224" width="300"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="questions">440, 1070, 273, 1071, 1072, 443, 3991, 271, 3992, 3993</div>
<div class="related">
<a href="../sets/number-types.html">Common Number Sets</a>
<a href="../algebra/complex-plane.html">Complex Plane</a>
<a href="mandelbrot.html">Mandelbrot Set</a>
<a href="complex-number-calculator.html">Complex Number Calculator</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/complex-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:21 GMT -->
</html>