Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

233 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/algebraic-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:03 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Algebraic Number</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Algebraic Number</h1>
<p class="center">Most numbers we use every day are Algebraic Numbers<br>
But some are <b>not</b>, such as <span class="times">π</span> and <i><b>e</b></i></p>
<h2>Algebraic Number</h2>
<div class="center80">
<p><b> Put simply</b>, when we have a polynomial equation like (for example)</p>
<h3 align="center">2x<sup>2</sup> + 4x 7 = 0</h3>
<p>whose coefficients (the numbers 2, 4 and 7) are <a href="../rational-numbers.html">rational numbers</a> (whole numbers or simple fractions) ...
</p>
<p class="center">... then <b>x</b> is <b>Algebraic</b>.</p>
</div>
<p>We can imagine all kinds of polynomials:</p>
<ul>
<li><b>x 1 = 0</b> has x = <b>1</b>,</li>
<li><b>x + 1 = 0</b> has x = <b></b><b>1</b>,</li>
<li><b>2x 1 = 0</b> has x = <b>½</b>,</li>
<li><b>x<sup>2 </sup> 2 = 0</b> has x = <b>√2</b>,</li>
<li>and so on</li></ul>
<p>In each case <b>x</b> is algebraic.</p>
<p>In fact all <a href="../whole-numbers.html">integers</a>, all <a href="../rational-numbers.html">rational numbers</a>, some <a href="../irrational-numbers.html">irrational numbers</a> (such as √2) are Algebraic.</p>
<div class="example">
<h3>Testing Game</h3>
<p>We can make a game of it!</p>
<p>Start with our number, and we have to get it to <b>zero </b>using only:</p>
<ul>
<li>whole numbers</li>
<li>add, subtract, multiply (but not divide)</li>
<li>whole number exponents</li></ul>
<p>Here are some examples:</p>
<div class="tbl">
<div class="row">
<span class="lt">Number</span><span class="rt">Getting it to Zero</span>
</div>
<div class="row">
<span class="lt">5</span><span class="rt">5 5 = 0</span>
</div>
<div class="row">
<span class="lt">7</span><span class="rt">7 + 7 = 0</span>
</div>
<div class="row">
<span class="lt">½</span><span class="rt">2(½) 1 = 0</span>
</div>
<div class="row">
<span class="lt">√2</span><span class="rt">(√2)<sup>2</sup> 2 = 0</span>
</div>
<div class="row">
<span class="lt">3√2</span><span class="rt">(3√2)<sup>2</sup> 18 = 0 </span>
</div>
</div><p>All those numbers are algebraic!</p>
<p>Try some yourself and see how you go.</p>
<p>Now try <span class="times">π</span> (pi) and see if you have any success.</p>
</div>
<h2>More Formally</h2>
<div class="words">
<p>To be algebraic, a number must be a root of a non-zero polynomial equation with <a href="../rational-numbers.html">rational</a> <a href="../algebra/definitions.html">coefficients</a>.</p>
</div>
So <b>x</b> is algebraic in this example:
<h3 align="center">2x<sup>3</sup> 5x + 39 = 0</h3>
<p>Because all conditions are met:</p>
<ul>
<li>2x<sup>3</sup> 5x + 39 is a non-zero polynomial (a polynomial which is not just "0")</li>
<li><b>x</b> is a root (i.e. <b>x</b> gives the result of <b>zero</b> for the function 2x<sup>3</sup> 5x + 39)</li>
<li>the <a href="../algebra/definitions.html">coefficients</a> (the numbers 2, 5 and 39) are <a href="../rational-numbers.html">rational numbers</a></li>
</ul>
<p>So we know <b>x</b> is algebraic</p>
<p>But let's see its value anyway:</p>
<div class="example">
<h3>Example: 2x<sup>3</sup> 5x + 39 = 0</h3>
<p>We need to find the value of <b>x</b> where <b>2x<sup>3</sup> 5x + 39 is equal to 0</b></p>
<p>Well <b>x = 3</b> works, because 2(3)<sup>3</sup> 5(3) + 39 = 54+15+39 = 0</p>
</div>
<p>Let's try another polynomial (remember: the coefficients must be rational).</p>
<div class="example">
<h3>Example: 2x<sup>3</sup> ¼ = 0</h3>
<p>The coefficients are 2 and −¼, both rational numbers. So <b>x is an Algebraic Number</b></p>
<p>We can also discover that <b>x = 0.5</b>, because 2(0.5)<sup>3</sup> ¼ = 0</p></div>
<p>In fact:</p>
<p class="center larger">All integers and rational numbers are algebraic,<br>
but an <a href="../irrational-numbers.html">irrational</a> number <b>may or may not</b> be algebraic</p>
<h2>Not Algebraic? Then Transcendental!</h2>
<p>When a number is not algebraic, it is called <a href="transcendental-numbers.html">transcendental</a>.</p>
<p>Back in 1844 Joseph Liouville created a number:</p>
<p class="center larger">0.110001000000000000000001000000...</p>
<p class="center">(it has a 1 in every <a href="factorial.html">factorial</a> numbered position such as 1, 2, 6, 24, etc)</p>
<p>And he showed it is <b>not algebraic</b> ... he had broken mathematics!</p>
<p>Just kidding. But it did <i>transcend</i> algebraic numbers and was</p>
<p class="center larger">the first known transcendental number</p>
<p>Then in 1873 Charles Hermite proved that <i><b>e</b></i> (<a href="e-eulers-number.html">Euler's number</a>) is transcendental, and in 1882 Ferdinand von Lindemann proved that <span class="times">π</span> (<a href="pi.html">pi</a>) is transcendental.</p>
<p>It is actually hard to prove that a number is transcendental.</p>
<h2>More</h2>
<p>Let's investigate a few more numbers</p>
<div class="example">
<h3>Example: the unit <a href="imaginary-numbers.html">imaginary number</a> <i><b>i</b></i></h3>
<p>Well, we know that <i><b>i</b></i><sup>2</sup> = 1, so <i><b>i</b></i> is the solution to:</p>
<p class="center"><b>x<sup>2</sup> + 1 = 0</b></p>So the imaginary number <b><i>i</i> is an Algebraic Number</b>
<p>Note: using the "testing game":&nbsp; <i><b>i</b></i><sup>2</sup> + 1 = 0</p>
</div>
<div class="example">
<h3>Example: <span style="font-size:20px; ">φ</span> (the <a href="golden-ratio.html">Golden Ratio</a>)</h3>
<p><span style="color:gold; font-size:20px; ">φ</span> is the solution to x<sup>2</sup> x 1 = 0</p>
<p>So <span style="color:gold; font-size:20px; ">φ</span><b> is an Algebraic Number</b></p>
</div>
<div class="example">
<h3>Example: x<sup>2</sup> + 2x + 10 = 0</h3>
<p>The solutions to this <a href="../algebra/quadratic-equation.html">quadratic equation</a> are <a href="complex-numbers.html">complex numbers</a> :</p>
<ul>
<li>x = 1 + 3<i><b>i</b></i></li>
<li>x = 1 3<i><b>i</b></i></li>
</ul>
<p>(Try putting them into the equation, and remember that <b><i>i</i></b><sup>2</sup> = 1)</p>
<p>They are both <b>Algebraic Numbers</b></p>
</div>
<h2>Which is More Common?</h2>
<p>It might seem that transcendental numbers are rare, but:</p>
<p class="center large"><b>almost all</b> real and complex numbers are <b>transcendental.</b></p>
<p>Why? Well, imagine some random real number where <b>each digit is randomly chosen</b>, and you get something like 7.17493614485672... (on for infinity). It is almost certain to be transcendental.</p>
<p>But in every day life we use carefully chosen numbers like 6 or 3.5 or 0.001, so most numbers we deal with (except <span class="times">π</span> and <i><b>e</b></i>) are algebraic, but any truly randomly chosen real or complex number is almost certain to be transcendental.</p>
<h2>Properties</h2>
<p>All algebraic numbers are computable and so they are definable.</p>
<p>The set of algebraic numbers is <b>countable</b>. Put simply, the list of <a href="../whole-numbers.html">whole numbers</a> is "countable", and you can arrange the algebraic numbers in a 1-to-1 manner with whole numbers, so they are also countable.</p>
<p>&nbsp;</p>
<div class="related">
<a href="transcendental-numbers.html">Transcendental Numbers</a>
<a href="../irrational-numbers.html">Irrational Numbers</a>
<a href="../algebra/definitions.html">Basic Definitions in Algebra</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/algebraic-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:03 GMT -->
</html>