new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
262 lines
11 KiB
HTML
262 lines
11 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/irrational-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:17 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Irrational Numbers</title>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="style4.css" as="style">
|
||
<link rel="preload" href="main4.js" as="script">
|
||
<link rel="stylesheet" href="style4.css">
|
||
<script src="main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Irrational Numbers</h1>
|
||
|
||
<p class="center">An <b>Irrational Number</b> is a real number that <b>cannot</b> be written as a simple fraction:</p>
|
||
<p class="center"><img src="numbers/images/rational-vs-irrational.svg" alt="rational vs irrational" style="max-width:100%" height="79" width="542"></p>
|
||
<p> <b>1.5</b> is rational, but <span class="times"><b>π</b></span> is irrational</p>
|
||
<p class="center large">Irrational means <b>not Rational</b> (no ratio)</p>
|
||
<p>Let's look at what makes a number rational or irrational ...</p>
|
||
|
||
<h3>Rational Numbers</h3>
|
||
<p>A <b><a href="rational-numbers.html">Rational</a></b> Number <b>can</b> be written as a <b>Ratio</b> of two integers (ie a simple fraction).</p>
|
||
|
||
<div class="example">
|
||
<p>Example: <b>1.5</b> is rational, because it can be written as the ratio <b>3/2</b></p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
<p>Example: <b>7</b> is rational, because it can be written as the ratio <b>7/1</b></p>
|
||
</div>
|
||
|
||
<div class="example">
|
||
<p>Example <b>0.333...</b> (3 repeating) is also rational, because it can be written as the ratio <b>1/3</b></p>
|
||
</div>
|
||
<p> </p>
|
||
|
||
<h3>Irrational Numbers</h3>
|
||
<p>But some numbers <b>cannot</b> be written as a ratio of two integers ...</p>
|
||
<p class="center larger">...they are called <b>Irrational Numbers</b>.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: <span class="times"><b>π</b> </span><b><a href="numbers/pi.html">(Pi)</a></b> is a famous irrational number.</h3>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="numbers/images/pi1.svg" alt="Pi" height="100" width="100"></p>
|
||
<p class="center"><b><span class="times"><b>π</b></span> = 3.1415926535897932384626433832795... (and more)</b></p>
|
||
<p>We <b>cannot</b> write down a simple fraction that equals Pi.</p>
|
||
<p>The popular approximation of <span class="frac"><sup>22</sup>/<sub>7</sub></span> = 3.1428571428571... is close but <b>not accurate</b>.</p>
|
||
</div>
|
||
<p>Another clue is that the decimal goes on forever without repeating.</p>
|
||
|
||
|
||
<h2>Cannot Be Written as a Fraction</h2>
|
||
|
||
<p class="center fun"><i>It is <b>irrational</b> because it cannot be written as a <b>ratio</b> (or fraction),<br>
|
||
not because it is crazy!</i></p>
|
||
<p>So we can tell if it is Rational or Irrational by trying to write the number as a simple fraction.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: <b>9.5</b> can be written as a simple fraction like this:</h3>
|
||
<p class="center larger">9.5 = <span class="intbl"><em>19</em><strong>2</strong></span></p>
|
||
<p class="center large">So it is a <b>rational number</b> (and so is <b>not irrational</b>)</p>
|
||
</div>
|
||
<p>Here are some more examples:</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th>Number</th>
|
||
<th width="10"> </th>
|
||
<th>As a Fraction</th>
|
||
<th width="30"> </th>
|
||
<th>Rational or<br>
|
||
Irrational?</th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td height="9">1.75</td>
|
||
<td> </td>
|
||
<td height="9"><span class="intbl"><em>7</em><strong>4</strong></span></td>
|
||
<td> </td>
|
||
<td height="9">Rational</td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>.001</td>
|
||
<td> </td>
|
||
<td><span class="intbl"><em>1</em><strong>1000</strong></span></td>
|
||
<td> </td>
|
||
<td>Rational</td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>√2<br>
|
||
(square root of 2)</td>
|
||
<td class="large"> </td>
|
||
<td class="large">?</td>
|
||
<td> </td>
|
||
<td><b>Irrational !</b></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<div class="simple">
|
||
|
||
|
||
<h2>Square Root of 2</h2>
|
||
|
||
<p>Let's look at the square root of 2 more closely.</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="numbers/images/square-root-2.svg" alt="square root 2" height="171" width="158"></td>
|
||
<td>When we draw a square of size "1",<br>
|
||
what is the distance across the diagonal?</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>The answer is the <b><a href="square-root.html">square root</a> of 2</b>, which is<b> 1.4142135623730950...(etc)</b></p>
|
||
<p>But it is not a number like 3, or five-thirds, or anything like that ...</p>
|
||
<div class="indent50px">
|
||
<p class="center">... in fact we <b>cannot</b> write the square root of 2 using a ratio of two numbers ...</p>
|
||
<p class="center">... (you can learn <b>why</b> on the <a href="numbers/irrational-finding.html">Is It Irrational?</a> page) ...</p>
|
||
<p class="center">... and so we know it is <b>an irrational number</b>.</p>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<h2>Famous Irrational Numbers</h2>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="numbers/images/pi1.svg" alt="Pi" height="100" width="100"></td>
|
||
<td> </td>
|
||
<td>
|
||
<p><b><a href="numbers/pi.html">Pi</a></b> is a famous irrational number. People have calculated Pi to over a quadrillion decimal places and still there is no pattern. The first few digits look like this:</p>
|
||
<p>3.1415926535897932384626433832795 (and more ...)</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="numbers/images/e1.svg" alt="e (eulers number)" height="100" width="100"></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>The number <i><b>e</b></i> (<a href="numbers/e-eulers-number.html">Euler's Number</a>) is another famous irrational number. People have also calculated <i><b>e</b></i> to lots of decimal places without any pattern showing. The first few digits look like this:</p>
|
||
<p>2.7182818284590452353602874713527 (and more ...)</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="numbers/images/phi.svg" alt="phi" height="95" width="84"></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>The <a href="numbers/golden-ratio.html">Golden Ratio</a> is an irrational number. The first few digits look like this:</p>
|
||
<p>1.61803398874989484820... (and more ...)</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td><img src="numbers/images/radical.svg" alt="radical symbol" height="95" width="72"></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>Many square roots, cube roots, etc are also irrational numbers. Examples:</p>
|
||
<div class="simple">
|
||
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td>√3</td>
|
||
<td>1.7320508075688772935274463415059 (etc)</td>
|
||
</tr>
|
||
<tr>
|
||
<td>√99</td>
|
||
<td>9.9498743710661995473447982100121 (etc)</td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>But √4 = 2 is rational, and √9 = 3 is rational ...</p>
|
||
<p class="center">... so <b>not all</b> roots are irrational.</p>
|
||
|
||
<h3> </h3>
|
||
|
||
<h3>Note on Multiplying Irrational Numbers</h3>
|
||
<p>Have a look at this:</p>
|
||
<ul>
|
||
<li><span class="times">π</span> × <span class="times">π</span> = <span class="times">π</span><sup>2</sup> is known to be <b>irrational</b></li>
|
||
<li>But √2 × √2 = <b>2</b> is <b>rational</b></li>
|
||
</ul>
|
||
<p>So be careful ... multiplying irrational numbers <b>might</b> result in a rational number!</p>
|
||
<p> </p>
|
||
<div class="fun">
|
||
|
||
<h3>Fun Facts ....</h3>
|
||
<p>Apparently <b><i>Hippasus</i></b> (one of <i>Pythagoras'</i> students) discovered irrational numbers when trying to write the square root of 2 as a fraction (using geometry, it is thought). Instead he proved the square root of 2 <i>could not</i> be written as a fraction, so it is <i>irrational</i>.</p>
|
||
<p>But followers of <i><b>Pythagoras</b></i> could not accept the existence of irrational numbers, and it is said that Hippasus was drowned at sea as a punishment from the gods!</p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="questions">434,435,1064,2022,3987,1065,3988,2023,2990,2991</div>
|
||
|
||
<div class="related">
|
||
<a href="surds.html">Surds</a>
|
||
<a href="square-root.html">Square Roots</a>
|
||
<a href="scientific-calculator.html">Scientific Calculator</a>
|
||
<a href="numbers/irrational-finding.html">Is It Irrational?</a>
|
||
<a href="numbers/index.html">Numbers Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/irrational-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:18 GMT -->
|
||
</html> |