lkarch.org/tools/mathisfun/www.mathsisfun.com/geometry/triangles-similar-theorems.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

166 lines
11 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "../Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/triangles-similar-theorems.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:31 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Theorems about Similar Triangles</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Theorems about Similar Triangles</h1>
<h2>1. The Side-Splitter Theorem</h2><p align="center">
<img src="images/tri-similar6.gif" width="226" height="208" alt="triangles similar ABC and ADE" />
</p>
<div class="def">
<p>If ADE is any triangle and BC is drawn parallel to DE, then <span class="intbl"><em>AB</em><strong>BD</strong></span> = <span class="intbl"><em>AC</em><strong>CE</strong></span></p>
</div>
<p>
To show this is true, draw the line BF parallel to AE to complete a parallelogram BCEF:</p><p align="center"><img src="images/tri-similar7a.gif" width="223" height="201" alt="triangles similar ABC and ADE: BF and EC same" /></p>
<p>Triangles ABC and BDF have exactly the same angles and so are similar (Why? See the section called <b> AA</b> on the page <a href="triangles-similar-finding.html">How To Find if Triangles are Similar</a>.)</p>
<ul>
<li>Side AB corresponds to side BD and side AC corresponds to side BF.</li>
<li>So AB/BD = AC/BF</li>
<li>But BF = CE</li>
<li>So AB/BD = AC/CE</li>
</ul>
<h2>The Angle Bisector Theorem</h2>
<p align="center">
<img src="images/tri-similar8.gif" width="304" height="120" alt="triangles similar ABC point D" /></p>
<div class="def">
<p>If ABC is any triangle and AD bisects (cuts in half) the angle BAC, then <span class="intbl"><em>AB</em><strong>BD</strong></span> = <span class="intbl"><em>AC</em><strong>DC</strong></span></p>
</div>
<p>To show this is true, we can label the triangle like this:</p>
<p align="center"><img src="images/tri-similar9.gif" width="300" height="113" alt="triangles similar angles x and x at A and angles y and 180-y at D" /></p>
<ul>
<li>Angle <span class="times"></span>BAD = Angle DAC = x&deg; </li>
<li>Angle ADB = y&deg; </li>
<li>Angle ADC = (180&minus;y)&deg;</li>
</ul>
<div class="tbl">
<div class="row"><span class="left">By the <a href="../algebra/trig-sine-law.html">Law of Sines</a> in triangle ABD:</span><span class="right"><span class="intbl"><em>sin(x)</em><strong>BD</strong></span> = <span class="intbl"><em>sin(y)</em><strong>AB</strong></span></span></div>
<div class="row"><span class="left">Multiply both sides by AB:</span><span class="right"><span class="intbl"><em>sin(x)AB </em><strong>BD</strong></span> = <span class="intbl"><em>sin(y)</em><strong>1</strong></span></span></div>
<div class="row"><span class="left">Divide both sides by sin(x):</span><span class="right"><b><span class="intbl"><em>AB</em><strong>BD</strong></span> = <span class="intbl"><em>sin(y)</em><strong>sin(x)</strong></span></b></span></div>
<div>&nbsp;</div>
<div class="row"><span class="left">By the Law of Sines in triangle ACD:</span><span class="right"><span class="intbl"><em>sin(x)</em><strong>DC</strong></span> = <span class="intbl"><em>sin(180&minus;y)</em><strong>AC</strong></span></span></div>
<div class="row"><span class="left">Multiply both sides by AC:</span><span class="right"><span class="intbl"><em>sin(x)AC</em><strong>DC</strong></span> = <span class="intbl"><em>sin(180&minus;y)</em><strong>1</strong></span></span></div>
<div class="row"><span class="left">Divide both sides by sin(x):</span><span class="right"><span class="intbl"><em>AC</em><strong>DC</strong></span> = <span class="intbl"><em>sin(180&minus;y)</em><strong>sin(x)</strong></span></span></div>
<div class="row"><span class="left">But <b>sin(180&minus;y) = sin(y)</b>:</span><span class="right"><b><span class="intbl"><em>AC</em><strong>DC</strong></span> = <span class="intbl"><em>sin(y)</em><strong>sin(x)</strong></span></b></span></div>
</div>
<p>Both <span class="intbl"><em>AB</em><strong>BD</strong></span> and <span class="intbl"><em>AC</em><strong>DC</strong></span> are equal to <span class="intbl"><em>sin(y)</em><strong>sin(x)</strong></span>, so:</p>
<p class="center large"><span class="intbl"><em>AB</em><strong>BD</strong></span> = <span class="intbl"><em>AC</em><strong>DC</strong></span></p>
<p>In particular, if triangle ABC is isosceles, then triangles ABD and ACD are <a href="triangles-congruent.html">congruent triangles</a></p><p align="center"><img src="images/tri-similar10.gif" width="335" height="155" alt="triangles similar right angle at D" /></p>
<p>And the same result is true:</p><p class="center large"><span class="intbl"><em>AB</em><strong>BD</strong></span> = <span class="intbl"><em>AC</em><strong>DC</strong></span></p>
<h2>3. Area and Similarity</h2>
<div class="def">
<p align="center">If two similar triangles have sides in the ratio x:y, <br />
<br />
then their areas are in the ratio x<sup>2</sup>:y<sup>2</sup></p>
</div>
<h3> Example:</h3>
<p>These two triangles are similar with sides in the ratio 2:1 (the sides of one are twice as long as the other): </p>
<p align="center"> <img src="images/tri-similar12a.gif" width="320" height="111" alt="triangles similar large and small" /></p>
<p>What can we say about their areas?</p>
<p>The answer is simple if we just draw in three more lines:</p><p align="center"><img src="images/tri-similar12b.gif" alt="triangles similar small fits inside large 3 times" /></p>
<p>We can see that the small triangle fits into the big triangle <b>four times</b>.</p>
<p>So when the lengths are <b>twice</b> as long, the area is <b>four times</b> as big</p>
<p>So the ratio of their areas is 4:1 </p>
<p>We can also write 4:1 as <span class="large">2<sup>2</sup>:1</span></p>
<h3>The General Case:</h3>
<p align="center"><img src="images/tri-similar11.gif" alt="triangles similar ABC and PQR" /></p>
<p align="center" class="larger">Triangles ABC and PQR are similar and have sides in the ratio <b>x:y</b> </p>
<p>We can find the areas using this formula from <a href="../algebra/trig-area-triangle-without-right-angle.html">Area of a Triangle</a>:</p>
<p align="center" class="large">Area of ABC = <span class="intbl"><em>1</em><strong>2</strong></span>bc sin(A)</p>
<p align="center" class="large">Area of PQR = <span class="intbl"><em>1</em><strong>2</strong></span>qr sin(P)</p>
<p>And we know the lengths of the triangles are in the ratio <b>x:y</b></p>
<p align="center"> q/b = y/x, so: <b>q = by/x</b></p>
<p align="center">and r/c = y/x, so <b>r = cy/x</b></p>
<p>Also, since the triangles are similar, <b>angles A and P</b> are the same:</p>
<p align="center"><b>A = P</b></p>
<p>We can now do some calculations:</p><div class="tbl">
<div class="row"><span class="left"><b>Area of triangle PQR</b>:</span><span class="right"><b><span class="intbl"><em>1</em><strong>2</strong></span>qr sin(P)</b></span></div>
<div class="row"><span class="left">Put in &quot;q = by/x&quot;, &quot;r = cy/x&quot; and &quot;P=A&quot;:</span><span class="right"><span class="intbl"><em>1</em><strong>2</strong></span><span class="intbl"><em>(by)(cy) sin(A)</em><strong>(x)(x)</strong></span></span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"><em>1</em><strong>2</strong></span><span class="intbl"><em>bcy<sup>2</sup> sin(A)</em><strong>x<sup>2</sup></strong></span></span></div>
<div class="row"><span class="left">Rearrange:</span><span class="right"><span class="intbl"><em>y<sup>2</sup></em><strong>x<sup>2</sup></strong></span> &times; <span class="intbl"><em>1</em><strong>2</strong></span>bc sin(A)</span></div>
<div class="row"><span class="left">Which is:</span><span class="right"><span class="intbl"><em>y<sup>2</sup></em><strong>x<sup>2</sup></strong></span> &times; <b>Area of Triangle ABC</b></span></div>
</div>
<p>So we end up with this ratio:</p>
<p align="center" class="large">Area of triangle ABC : Area of triangle PQR = x<sup>2 </sup>: y<sup>2</sup></p>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(1806, 1807, 3965, 1808, 1809, 3966, 1810, 1811, 3967, 3968);</script>&nbsp;
</div>
<div class="related">
<a href="similar.html">Similar</a>
<a href="triangles-similar.html">Similar Triangles</a>
<a href="triangles-similar-finding.html">Finding Similar Triangles</a>
<a href="congruent.html">Congruent</a>
<a href="triangles-congruent.html">Congruent Triangles</a>
<a href="mean-proportional.html">Mean Proportional</a> <a href="../algebra/trigonometry-index.html">Trigonometry Index</a>
</div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/triangles-similar-theorems.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:33 GMT -->
</html>