new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
188 lines
9.4 KiB
HTML
188 lines
9.4 KiB
HTML
<!doctype html>
|
|
<html lang="en">
|
|
<!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
|
<!-- Mirrored from www.mathsisfun.com/geometry/hyperbola.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:02 GMT -->
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Hyperbola</title>
|
|
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta name="referrer" content="always">
|
|
<link rel="stylesheet" type="text/css" href="../style3.css">
|
|
<script src="../main3.js"></script>
|
|
</head>
|
|
|
|
<body id="bodybg">
|
|
<div class="bg">
|
|
<div id="stt"></div>
|
|
<header>
|
|
<div id="hdr"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
|
<div id="gtran">
|
|
<script>document.write(getTrans());</script>
|
|
</div>
|
|
<div id="adTopOuter" class="centerfull noprint">
|
|
<div id="adTop">
|
|
<script>document.write(getAdTop());</script>
|
|
</div>
|
|
</div>
|
|
<div id="adHide">
|
|
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
|
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
|
<a href="../about-ads.html">About Ads</a></div>
|
|
</div>
|
|
</header>
|
|
<nav>
|
|
<div id="menuWide" class="menu">
|
|
<script>document.write(getMenu(0));</script>
|
|
</div>
|
|
<div id="linkto">
|
|
<div id="linktort">
|
|
<script>document.write(getLinks());</script>
|
|
</div>
|
|
</div>
|
|
<div id="search" role="search">
|
|
<script>document.write(getSearch());</script>
|
|
</div>
|
|
<div id="menuSlim" class="menu">
|
|
<script>document.write(getMenu(1));</script>
|
|
</div>
|
|
<div id="menuTiny" class="menu">
|
|
<script>document.write(getMenu(2));</script>
|
|
</div>
|
|
</nav>
|
|
<div id="extra"></div>
|
|
</div>
|
|
<article id="content" role="main">
|
|
<!-- #BeginEditable "Body" -->
|
|
<h1 class="center">Hyperbola</h1>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/hyperbola1.svg" alt="hyperbola path of spacecraft" /></p>
|
|
<p>Did you know that the orbit of a spacecraft can sometimes be a hyperbola?</p>
|
|
<p>A spacecraft can use the gravity of a planet to alter its path and propel it at high speed away from the planet and back out into space using a technique called "gravitational slingshot".</p>
|
|
<p>If this happens, then the path of the spacecraft is a <b>hyperbola</b>.</p>
|
|
<p>(Play with this at <a href="../numbers/gravity-freeplay.html">Gravity Freeplay</a>)</p>
|
|
<h2>Definition</h2>
|
|
<p>A hyperbola is two curves that are like infinite bows.</p>
|
|
<p>Looking at just one of the curves:</p>
|
|
<p class="center larger">any point <b>P</b> is closer to <b>F</b> than to <b>G</b> by some constant amount</p>
|
|
<p>The other curve is a mirror image, and is closer to G than to F.</p>
|
|
<p class="center"><img src="images/hyperbola-distance.svg" alt="hyperbola distances" /></p>
|
|
<p>In other words, the distance from <b>P to F</b> is always less than the distance <b>P to G</b> by some constant amount. (And for the other curve <b>P to G</b> is always less than <b>P to F</b> by that constant amount.)</p>
|
|
|
|
<div class="def">
|
|
<p>As a formula:</p>
|
|
<p class="center larger">|PF − PG| = constant</p>
|
|
<ul>
|
|
<li>PF is the distance P to F</li>
|
|
<li>PG is the distance P to G</li>
|
|
<li>|| is the <a href="../numbers/absolute-value.html">absolute value</a> function (makes any negative a positive)</li>
|
|
</ul>
|
|
|
|
</div>
|
|
<p>Each bow is called a <b>branch</b> and F and G are each called a <b>focus</b>.</p>
|
|
<p>Have a try yourself:</p>
|
|
<iframe src="ihyperbola.html" scrolling="no" style="width:362px; height:362px; overflow:hidden; margin:auto; display:block; border:none;"></iframe>
|
|
|
|
<p>Try moving point <b>P</b>: what do you notice about the lengths <b>PF</b> and <b>PG</b> ?</p>
|
|
<p>Also try putting point <b>P</b> on the other branch.</p>
|
|
<p>There are some other interesting things, too:</p>
|
|
<p class="center"><img src="images/hyperbola-foci.svg" alt="hyperbola foci etc" /></p>
|
|
<p>On the diagram you can see:</p>
|
|
<ul>
|
|
<li>an <b>axis of symmetry</b> (that goes through each focus)</li>
|
|
<li>two <b>vertices</b> (where each curve makes its sharpest turn)</li>
|
|
<li>the distance between the vertices (2a on the diagram) is the <b>constant difference</b> between the lengths <b>PF</b> and <b>PG</b></li>
|
|
<li>two <b>asymptotes</b> which are not part of the hyperbola but show where the curve would go if continued indefinitely in each of the four directions</li>
|
|
</ul>
|
|
<p>And, strictly speaking, there is also <b>another axis of symmetry</b> that goes down the middle and separates the two branches of the hyperbola.</p>
|
|
<table style="border: 0; margin:auto;">
|
|
<tr>
|
|
<td><h2>Conic Section</h2>
|
|
<p>You can also get a hyperbola when you slice through a double cone.</p>
|
|
<p>The slice must be steeper than that for a parabola, but does not<br>
|
|
have to be parallel to the cone's axis for the hyperbola to be symmetrical.</p>
|
|
<p>So the hyperbola is a <a href="conic-sections.html">conic section</a> (a section of a cone).</p></td>
|
|
<td> </td>
|
|
<td><img src="images/conic-hyperbola2.jpg" alt="conic section hyperbola" width="116" height="200" /></td>
|
|
</tr>
|
|
</table>
|
|
<h2><a name="equation" id="equation"></a>Equation</h2>
|
|
<p>By placing a hyperbola on an <a href="../data/cartesian-coordinates.html">x-y graph</a> (centered over the x-axis and y-axis), the equation of the curve is:</p>
|
|
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> − <span class="intbl"><em>y<sup>2</sup></em><strong>b<sup>2</sup></strong></span> = 1</p>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/hyperbola6.svg" alt="hyperbola on xy graph" /></p>
|
|
<p>Also:</p>
|
|
<p>One <b>vertex</b> is at (a, 0), and the other is at (−a, 0)</p>
|
|
<p>The <b>asymptotes</b> are the straight lines:</p>
|
|
<ul>
|
|
<li>y = (b/a)x</li>
|
|
<li>y = −(b/a)x</li>
|
|
</ul>
|
|
<p>(Note: the equation is similar to the equation of the <a href="ellipse.html#equation">ellipse</a>: <b>x<sup>2</sup>/a<sup>2</sup> + y<sup>2</sup>/b<sup>2</sup> = 1</b>, except for a "−" instead of a "+")</p>
|
|
<h2>Eccentricity</h2>
|
|
|
|
<p>Any branch of a hyperbola can also be defined as a curve where the distances of any point from:</p>
|
|
<ul>
|
|
<li>a fixed point (the <b>focus</b>), and</li>
|
|
<li>a fixed straight line (the <b>directrix</b>)
|
|
|
|
are always in the same ratio.</li>
|
|
</ul>
|
|
<p class="center"><img src="images/hyperbola2.svg" alt="hyperbola focus directrix" /></p>
|
|
<p>This ratio is called the <a href="eccentricity.html">eccentricity</a>, and for a hyperbola it is always greater than 1.</p>
|
|
<p>The eccentricity (usually shown as the letter <span class="large">e</span>) shows how "uncurvy" (varying from being a circle) the hyperbola
|
|
is.</p>
|
|
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/hyperbola7.svg" alt="hyperbola with points N P F" /></p>
|
|
<p>On this diagram:</p>
|
|
<ul>
|
|
<li>P is a point on the curve,</li>
|
|
<li>F is the focus and</li>
|
|
<li>N is the point on the directrix so that PN is perpendicular to the directrix.</li>
|
|
</ul>
|
|
<p>The eccentricity is the ratio PF/PN, and has the formula:</p>
|
|
<p class="center large">e = <span class="intbl"><em>√(a<sup>2</sup>+b<sup>2</sup>)</em><strong>a</strong></span></p>
|
|
<p>Using "a" and "b" from the diagram above.</p>
|
|
<h2>Latus Rectum</h2>
|
|
<table style="border: 0; margin:auto;">
|
|
<tr>
|
|
<td><img src="images/hyperbola8.svg" alt="hyperbola latus rectum" /></td>
|
|
<td><p>The Latus Rectum is the line through the focus and parallel to the directrix.</p>
|
|
<p>The length of the Latus Rectum is 2b<sup>2</sup>/a.</p></td>
|
|
</tr>
|
|
</table>
|
|
<h2>1/x</h2>
|
|
<p class="center"><img src="../sets/images/function-reciprocal.svg" alt="Reciprocal function" /><br>
|
|
The <a href="../sets/function-reciprocal.html">reciprocal</a> function y = 1/x is a hyperbola!</p>
|
|
<p> </p>
|
|
<div class="questions">
|
|
|
|
<script>getQ(835, 3336, 836, 3337, 837, 3338, 838, 3339, 9068, 9069);</script>
|
|
|
|
</div>
|
|
|
|
<div class="related">
|
|
<a href="conic-sections.html">Conic Sections</a>
|
|
<a href="index.html">Geometry Index</a>
|
|
</div>
|
|
<!-- #EndEditable -->
|
|
|
|
</article>
|
|
<div id="adend" class="centerfull noprint">
|
|
<script>document.write(getAdEnd());</script>
|
|
</div>
|
|
<footer id="footer" class="centerfull noprint">
|
|
<script>document.write(getFooter());</script>
|
|
</footer>
|
|
<div id="copyrt">
|
|
Copyright © 2020 MathsIsFun.com
|
|
</div>
|
|
<script>document.write(getBodyEnd());</script>
|
|
</body>
|
|
<!-- #EndTemplate -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/geometry/hyperbola.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:04 GMT -->
|
|
</html>
|