Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

238 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/circle-theorems.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:56 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Circle Theorems</title>
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Circle Theorems</h1>
<p class="center">Some interesting things about angles and circles</p>
<h2>Inscribed Angle</h2>
<p>First off, a definition:</p>
<div class="def">
<p class="center"><b>Inscribed Angle</b>: an angle made from points sitting on the circle's circumference.</p>
</div>
<p class="center"><img src="images/inscribed-angle.svg" alt="inscribed angle ABC" height="194" width="198"><br>
<span class="larger">A and C are "end points"<br>
B is the "apex point"</span></p>
<p>Play with it here:</p>
<div class="script" style="height: 260px;">
images/circle-prop.js?mode=inscribe
</div>
<p class="center">When you move point "B", what happens to the angle?</p>
<h2>Inscribed Angle Theorems</h2>
<p>Keeping the end points fixed ...</p>
<p class="center">... the angle <span class="large"></span> is <b>always the same</b>,<br>
no matter where it is on the <b>same arc</b> between end points:</p>
<p class="center"><img src="images/inscribed-angle-2.svg" alt="inscribed angle always a on arc" height="173" width="173"><br>
(Called the <b>Angles Subtended by Same Arc Theorem</b>)</p>
<p><b>And</b> an inscribed angle <span class="large"></span> is half of the central angle <span class="large">2a°</span></p>
<p class="center"><img src="images/inscribed-angle-1.svg" alt="inscribed angle a on circumference, 2a at center" height="173" width="173"><br>
(Called the <b>Angle at the Center Theorem</b>)&nbsp;</p>
<p>
Try it here (not always exact due to rounding):
</p>
<div class="script" style="height: 260px;">
images/circle-prop.js?mode=inscribe2
</div>
<div class="example">
<h3>Example: What is the size of Angle POQ? (O is circle's center)</h3>
<p class="center"><img src="images/inscribed-angle-ex1.svg" alt="inscribed angle 62 on circumference" height="155" width="167"></p>
<p>Angle POQ = 2 × Angle PRQ = 2 × 62° = <b>124°</b></p>
</div>
<div class="example">
<h3>Example: What is the size of Angle CBX?</h3>
<p style="float:left; margin: 0 20px 5px 0;"><img src="images/inscribed-angle-ex2.svg" alt="inscribed angle example" height="167" width="175"></p>
<p>Angle ADB = 32° also equals Angle ACB.</p>
<p>And Angle ACB also equals Angle XCB.</p>
<p>So in triangle BXC we know Angle BXC = 85°, and Angle XCB = 32°</p>
<p>Now use angles of a triangle add to 180° :</p>
<div class="so">Angle CBX + Angle BXC + Angle XCB = 180°</div>
<div class="so">Angle CBX + 85° + 32° = 180°</div>
<div class="so">Angle CBX = 63°</div>
</div>
<h2>Angle in a Semicircle (Thales' Theorem)</h2>
<p>An angle <b>inscribed</b> across a circle's diameter is always a right angle:</p>
<p class="center"><img src="images/angle-semicircle-1.svg" alt="angle inscribed across diameter is 90 degrees" height="173" width="173"><br>
<i>(The end points are either end of a circle's diameter,<br>
the apex point can be anywhere on the circumference.)</i></p>
<p>Play with it here:</p>
<div class="script" style="height: 260px;">
images/circle-prop.js?mode=thales
</div>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td valign="top">
<p>Why? Because:</p>
<p>The inscribed angle <span class="large">90°</span> is half of the central angle <span class="large">180°</span></p>
<p>(Using "Angle at the Center Theorem" above)</p></td>
<td><img src="images/angle-semicircle-1a.gif" alt="angle semicircle 90 degrees and 180 at center" height="180" width="182"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<h3>Another Good Reason Why It Works</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/angle-semicircle-2.gif" alt="angle semicircle rectangle" height="180" width="184"></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/angle-semicircle-3.gif" alt="angle semicircle rectangle" height="182" width="183"></p>
<p>We could also rotate the shape around 180° to make a rectangle!</p>
<p>It <b>is</b> a rectangle, because all sides are parallel, and both diagonals are equal.</p>
<p>And so its internal angles are all right angles (90°).</p>
<div class="example">
<h3>Example: What is the size of Angle BAC?</h3>
<p class="center"><img src="images/inscribed-angle-ex3.svg" alt="inscribed angle example" height="162" width="183"></p>
<p>The Angle in the Semicircle Theorem tells us that Angle ACB = 90°</p>
<p>Now use angles of a triangle add to 180° to find Angle BAC:</p>
<div class="so"> Angle BAC + 55° + 90° = 180°</div>
<div class="so"> Angle BAC = 35°</div>
</div>
<p>&nbsp;</p>
<p class="center"><img src="images/angle-semicircle-4.gif" alt="angle semicircle always 90 on circumference" height="98" width="183"><br>
So there we go! No matter <b>where</b> that angle is<br>
on the circumference, it is <b>always 90°</b></p>
<h3>Finding a Circle's Center</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/circle-theorems-diameters.svg" alt="finding as circles center" height="173" width="173"></p>
<p>We can use this idea to find a circle's center:</p>
<ul>
<li>draw a right angle from anywhere on the circle's circumference, then draw the diameter where the two legs hit the circle</li>
<li>do that again but for a different diameter</li>
</ul>
<p>Where the diameters cross is the center!</p>
<p><br></p>
<h3>Drawing a Circle From 2 Opposite Points</h3>
<p>When we know two opposite points on a circle we can draw that circle.</p>
<p>Put some pins or nails on those points and use a builder's square like this:</p>
<p class="center">&nbsp; <img src="images/circle-theorems-thales-draw.svg" alt="finding as circles center" height="218" width="236"></p>
<h2>Cyclic Quadrilateral</h2>
<table style="border: 0;">
<tbody>
<tr>
<td valign="top">
<p align="right">A "Cyclic" <a href="../quadrilaterals.html">Quadrilateral</a> has every vertex on a circle's circumference:</p></td>
<td><img src="images/quadrilateral-cyclic-1.svg" alt="quadrilateral cyclic" height="173" width="173"></td>
</tr>
<tr>
<td valign="top">
<p id="firstHeading3">A Cyclic Quadrilateral's <b>opposite angles add to 180°</b>:</p>
<div class="center">
a + c = 180°<br>
b + d = 180°
</div></td>
<td><img src="images/quadrilateral-cyclic-2.svg" alt="quadrilateral cyclic a and c add to 180" height="173" width="173"></td>
</tr>
</tbody></table>
<div class="example">
<h3>Example: What is the size of Angle WXY?</h3>
<p class="center"><img src="images/inscribed-angle-ex4.svg" alt="inscribed angle example" height="154" width="165"></p>
<p>Opposite angles of a cyclic quadrilateral add to 180°</p>
<div class="so"> Angle WZY + Angle WXY = 180°</div>
<div class="so"> 69° + Angle WXY = 180°</div>
<div class="so"> Angle WXY = 111°</div>
</div><p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/angle-tangent.svg" alt="90 degrees between radius and tangent" height="232" width="227"></p>
<h2>Tangent Angle</h2>
<p>A <a href="tangent-secant-lines.html">tangent line</a> just touches a circle at one point.</p>
<p>It always forms a right angle with the circle's radius.</p>
<div style="clear:both">
</div>
<p>&nbsp;</p>
<div class="questions">1012, 3240, 1013, 3241, 1014, 3242, 1015, 3243, 1016, 3244</div>
<div class="related">
<a href="circle.html">Circle</a>
<a href="index.html">Geometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/circle-theorems.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:00 GMT -->
</html>