lkarch.org/tools/mathisfun/www.mathsisfun.com/data/random-variables-continuous.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

197 lines
9.1 KiB
HTML

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/data/random-variables-continuous.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:22 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Random Variables - Continuous</title>
<meta name="description" content="A Random Variable is a set of possible values from a random experiment.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="advText">Advanced</div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 style="text-align:center">Random Variables - Continuous</h1>
<p>A Random Variable is a set of <b>possible values</b> from a random experiment.</p>
<div class="example">
<h3>Example: Tossing a coin: we could get Heads or Tails. </h3>
<p> Let's give them the values <b>Heads=0</b> and <b>Tails=1</b> and we have a Random Variable "X":</p>
<p>&nbsp;</p>
<p class="center"><img src="images/random-variable-1.svg" alt="random variable 1"></p>
<p>In short:</p>
<p class="center larger">X = {0, 1} </p>
<p>Note: We could choose Heads=100 and Tails=150 or other values if we want! It is our choice.</p>
</div>
<h2>Continuous</h2>
<p>Random Variables can be either <a href="data-discrete-continuous.html"><span><span style="text-decoration:underline">Discrete
or Continuous</span></span></a>:</p>
<ul>
<li>Discrete Data can only take certain values (such as 1,2,3,4,5) </li>
<li>Continuous Data can take any value within a range (such as a person's height)</li>
</ul>
<p>In our Introduction to <span style="text-align:center"><a href="random-variables.html">Random Variables</a></span> (please read that first!) we look at many examples of Discrete Random Variables.</p>
<p>But here we look at the more advanced topic of <span style="text-align:center">Continuous Random Variables. </span></p>
<p>&nbsp;</p>
<h2>The Uniform Distribution</h2>
<p>The Uniform Distribution (also called the Rectangular Distribution) is the simplest distribution. </p>
<p>It has equal probability for all values of the
Random variable between <b>a</b> and <b>b</b>:</p>
<p style="text-align:center"><img src="images/uniform-distribution.svg" alt="uniform distribution p=1/(b-a)"><br>
The probability of any value between <b>a</b> and <b>b</b> is <b>p</b>
</p>
<p>We also know that p = 1/(b-a), because the total of all probabilities must
be 1, so</p>
<div class="so">the area of the rectangle = 1</div>
<div class="so">p &times; (b&minus;a) = 1</div>
<div class="so">p = 1/(b&minus;a)</div>
<p>We can write:</p>
<p class="center"><span class="larger">P(X = x) = 1/(b&minus;a) for a &le;
x &le; b</span><br>
P(X = x) = 0 otherwise </p>
<div class="example">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/old-faithful.jpg" alt="old faithful" height="171" width="120"></p>
<h3>Example: Old Faithful erupts every 91 minutes. You arrive there at random and wait for 20 minutes ... what is the probability you will see it erupt?</h3>
<p>&nbsp;</p>
<p>This is actually easy to calculate, 20 minutes out of 91 minutes is: </p>
<p class="center"><b>p = 20/91 = 0.22</b> (to 2 decimals)</p>
<p>&nbsp;</p>
<p>But let's use the Uniform Distribution for practice.</p>
<p>To find the probability between <b>a</b> and <b>a+20</b>, find the blue area:</p>
<p class="center"><img src="images/uniform-distribution-ex.svg" alt="uniform distribution example"></p>
<p class="center larger">Area = (1/91) x (a+20 &minus; a) <br>
= (1/91) x 20 <br>
= 20/91 <br>
= <b>0.22</b> (to 2 decimals) </p>
<p>So there is a 0.22 probability you will see Old Faithful erupt.</p>
<p>&nbsp;</p>
<p>If you waited the full 91 minutes you would be sure (<b>p=1</b>) to have seen it erupt.</p>
<p>But remember this is a random thing! It might erupt the moment you arrive, or any time in the 91 minutes.</p>
</div>
<h2>Cumulative Uniform Distribution</h2>
<p>We can have the Uniform Distribution as a <b>cumulative</b> (adding up as it goes along) distribution: </p>
<p class="center"><img src="images/uniform-distribution-cumulative.gif" alt="uniform distribution cumulative" height="171" width="190"><br>
The probability starts at 0 and builds up to 1</p>
<div class="words">
<p>This type of thing is called a "Cumulative distribution function", often shortened to "CDF"</p>
</div>
<div class="example">
<h3>Example (continued):</h3>
<p>Let's use the "CDF" of the previous Uniform Distribution to work out the probability:</p>
<p class="center"><img src="images/uniform-distribution-cumulative-ex.gif" alt="uniform distribution cumulative" height="169" width="203"><br>
</p>
<p>At <b>a+20</b> the probability has accumulated to about <b>0.22</b></p>
</div>
<h2>Other Distributions</h2>
<table align="center" border="0">
<tbody>
<tr>
<td width="300">Knowing how to use the Uniform Distribution helps when dealing with more complicated distributions like this one:</td>
<td><img src="images/non-uniform-distribution.gif" alt="non uniform distribution" height="170" width="190"></td>
</tr>
</tbody></table>
<div class="words">
<p>The general name for any of these is probability density function or "pdf"</p>
</div>
<h2>The Normal Distribution</h2>
<p> The most important continuous distribution
is the <a href="standard-normal-distribution.html">Standard Normal Distribution</a></p>
<p>It is so important the Random Variable has its own special letter <b>Z</b>.</p>
<p>The graph for Z is a symmetrical bell-shaped curve:</p>
<p class="center"><img src="images/standard-normal-distribution-simple.gif" alt="standard normal distribution " height="231" width="423"></p>
<p>Usually we want to find the probability
of Z being between certain values.</p>
<div class="example">
<h3>Example: P(0 &lt; Z &lt; 0.45)</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/standard-normal-distribution-0-45.gif" alt="standard normal distribution 0.45 = 0.1736" height="163" width="178"></p>
<p>(What is the probability that Z is between 0 and 0.45)</p>
<p>This is found by using the <a href="standard-normal-distribution-table.html">Standard
Normal Distribution Table</a></p>
<p>Start at the row for 0.4, and read along
until 0.45: there is the value 0.1736</p>
<p class="center larger">P(0 &lt; Z &lt; 0.45) = 0.1736</p>
</div>
<p>&nbsp;</p>
<h2>Summary</h2>
<ul class="larger">
<li>A <span style="font-weight:bold">Random
Variable</span> is a variable whose possible values are numerical outcomes
of a random experiment.</li>
<li>Random
Variables can be discrete or continuous.</li>
<li>An
important example of a continuous Random variable is the <span style="font-weight:bold">Standard Normal</span> variable, <b>Z</b>.</li>
</ul>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(8868, 8869, 8870, 8871, 8872, 8873, 8874, 8875, 8876, 8877);</script>&nbsp;
</div>
<div class="related">
<a href="random-variables.html">Random Variables</a>
<a href="index.html">Data Index</a>
</div>
<!-- #EndEditable -->
</div>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body>
<!-- Mirrored from www.mathsisfun.com/data/random-variables-continuous.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:23 GMT -->
</html>