Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

371 lines
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits-evaluating.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Limits - Evaluating</title>
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Limits <i>(Evaluating)</i></h1>
<p class="center"><i>You should read <a href="limits.html">Limits (An Introduction)</a> first</i></p>
<h2>Quick Summary of Limits</h2>
<p>Sometimes we can't work something out directly ... but we <b>can</b> see what it should be as we get closer and closer!</p>
<div class="example">
<h3>Example:</h3>
<p class="center larger"><span class="intbl">
<em>(x<sup>2</sup> 1)</em>
<strong>(x 1)</strong>
</span></p>
<p>Let's work it out for x=1:</p>
<p class="center larger"><span class="intbl">
<em>(1<sup>2 </sup> 1)</em>
<strong>(1 1)</strong>
</span> = <span class="intbl">
<em>(1 1)</em>
<strong>(1 1)</strong>
</span> = <span class="intbl">
<em>0</em>
<strong>0</strong>
</span></p>
</div>
<p>Now 0/0 is a difficulty! We don't really know the value of 0/0 (it is "indeterminate"), so we need another way of answering this.</p>
<p>So instead of trying to work it out for x=1 let's try <b>approaching</b> it closer and closer:</p>
<div class="example">
<h3>Example Continued:</h3>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td class="larger">x</td>
<td style="width:30px;">&nbsp;</td>
<td class="larger"><span class="intbl">
<em>(x<sup>2</sup> 1)</em>
<strong>(x 1)</strong>
</span></td>
</tr>
<tr style="text-align:right;">
<td>0.5</td>
<td>&nbsp;</td>
<td>1.50000</td>
</tr>
<tr style="text-align:right;">
<td>0.9</td>
<td>&nbsp;</td>
<td>1.90000</td>
</tr>
<tr style="text-align:right;">
<td>0.99</td>
<td>&nbsp;</td>
<td>1.99000</td>
</tr>
<tr style="text-align:right;">
<td>0.999</td>
<td>&nbsp;</td>
<td>1.99900</td>
</tr>
<tr style="text-align:right;">
<td>0.9999</td>
<td>&nbsp;</td>
<td>1.99990</td>
</tr>
<tr style="text-align:right;">
<td>0.99999</td>
<td>&nbsp;</td>
<td>1.99999</td>
</tr>
<tr style="text-align:right;">
<td>...</td>
<td>&nbsp;</td>
<td>...</td>
</tr>
</tbody></table>
</div>
<p>Now we see that as x gets close to 1, then <span class="intbl">
<em>(x<sup>2</sup>1)</em>
<strong>(x1)</strong>
</span> gets <b>close to 2</b></p>
</div>
<p>We are now faced with an interesting situation:</p>
<ul>
<li>When x=1 we don't know the answer (it is <b>indeterminate</b>)</li>
<li>But we can see that it is <b>going to be 2</b></li>
</ul>
<p>We want to give the answer "2" but can't, so instead mathematicians say exactly what is going on by using the special word "limit"</p>
<p class="center larger">The <b>limit</b> of <span class="intbl">
<em>(x<sup>2</sup>1)</em>
<strong>(x1)</strong>
</span> as x approaches 1 is<b> 2</b></p>
<p>And it is written in symbols as:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>x→1</strong></span><span class="intbl"><em>x<sup>2</sup>1</em><strong>x1</strong></span> = 2</p>
<p>So it is a special way of saying,<i> "ignoring what happens when we get there, but as we get closer and closer the answer gets closer and closer to 2"</i></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">
<p>As a graph it looks like this:</p>
<p>So, in truth, we <b>cannot say what the value at x=1 is.</b></p>
<p>But we <b>can</b> say that as we approach 1, <b>the limit is 2.</b></p>
</td>
<td style="text-align:right;">&nbsp;</td>
<td><img src="images/graph-x2-1-x-1.svg" alt="graph hole"></td>
</tr>
</tbody></table>
<h2>Evaluating Limits</h2>
<p>"Evaluating" means to find the value of (<i>think e-"<b>value"</b>-ating</i>)</p>
<p>In the example above we said the limit was 2 because it <b>looked like it was going to be</b>. But that is not really good enough!</p>
<p>In fact there are <b>many ways</b> to get an accurate answer. Let's look at some:</p>
<p>&nbsp;</p>
<h3>1. Just Put The Value In</h3>
<p>The first thing to try is just putting the value of the limit in, and see if it works (in other words <a href="../algebra/substitution.html">substitution</a>).</p>
<div class="example">
<h3>Example:</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td class="larger"><span class="lim"><em>lim</em><strong>x→10</strong></span><span class="intbl"><em>x</em><strong>2</strong></span></td><!-- limx->10 x/2 -->
<td>&nbsp; <img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"> &nbsp;</td>
<td class="larger"><span class="intbl"><em>10</em><strong>2</strong></span> = 5</td>
<td>&nbsp; <img src="../images/style/yes.svg" alt="yes"></td>
</tr>
</tbody></table>
<p>Easy!</p>
</div>
<div class="example">
<h3>Example:</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td class="larger"><span class="lim"><em>lim</em><strong>x→1</strong></span><span class="intbl"><em>x<sup>2</sup>1</em><strong>x1</strong></span>
<!-- limx->1 x^2~&minus;1/x&minus;1 -->
</td>
<td>&nbsp; <img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"> &nbsp;</td>
<td class="larger"><span class="intbl"><em>(11)</em><strong>(11)</strong></span> = <span class="intbl"><em>0</em><strong>0</strong></span></td>
<td>&nbsp; <img src="../images/style/no.svg" alt="not"></td>
</tr>
</tbody></table>
<p>No luck. Need to try something else.</p>
</div>
<p>&nbsp;</p>
<h3>2. Factors</h3>
<p>We can try <a href="../algebra/factoring.html">factoring</a>.</p>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="lim"><em>lim</em><strong>x→1</strong></span><span class="intbl"><em>x<sup>2</sup>1</em><strong>x1</strong></span></p>
<p>By factoring <span class="larger">(x<sup>2</sup>1)</span> into <span class="larger">(x1)(x+1)</span> we get:</p><br>
<div class="center large"><span class="lim"><em>lim</em><strong>x→1</strong></span> <span class="intbl"><em>x<sup>2</sup>1</em><strong>x1</strong></span> = <span class="lim"><em>lim</em><strong>x→1</strong></span> <span class="intbl"><em>(x1)(x+1)</em><strong>(x1)</strong></span>
</div>
<!-- LIM[x->1] x^2~-1/x-1 = LIM[x->1] (x-1)(x+1)/(x-1)-->
<br>
<div class="center large">= <span class="lim"><em>lim</em><strong>x→1</strong></span> (x+1)</div>
<!-- = LIM[x->1] (x+1) -->
<p>Now we can just substitiute x=1 to get the limit:</p>
<div class="center large"><span class="lim"><em>lim</em><strong>x→1</strong></span> (x+1) = 1+1 = 2</div>
<!-- LIM[x->1] (x+1) = 1+1 = 2 -->
</div>
<h3>3. Conjugate</h3>
<p>For some fractions multiplying top and bottom by a <a href="../algebra/conjugate.html">conjugate</a> can help.</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td align="right" valign="top">The conjugate is where we change<br>
the sign in the middle of 2 terms like this:</td>
<td><img src="../algebra/images/conjugate.svg" alt="conjugate 3x+1 is 3x-1"></td>
</tr>
</tbody></table>
<p>Here is an example where it will help us find a limit:</p>
</div>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<div class="center larger"><span class="lim"><em>lim</em><strong>x→4</strong></span> <span class="intbl"><em>2√x</em><strong>4x</strong></span></div>
<!-- LIM[x->4] 2-SQRx/4-x --></td>
<td>&nbsp;</td>
<td>Evaluating this at x=4 gives 0/0, which is not a good answer!</td>
</tr>
</tbody></table>
<p>So, let's try some rearranging:</p>
<table align="center" width="91%" border="0">
<tbody>
<tr>
<td align="right" height="51" width="66%">Multiply top and bottom by the conjugate of the top:</td>
<td align="right" height="51" width="7%">&nbsp;</td>
<td height="51" width="27%">
<div class="center larger"><span class="intbl"><em>2√x</em><strong>4x</strong></span> × <span class="intbl"><em>2+√x</em><strong>2+√x</strong></span></div>
<!-- 2-SQRx/4-x * 2+SQRx/2+SQRx --></td>
</tr>
<tr>
<td align="right" width="66%">&nbsp;</td>
<td align="right" width="7%">&nbsp;</td>
<td width="27%">&nbsp;</td>
</tr>
<tr>
<td align="right" width="66%">Simplify top using <span class="center large">(a+b)(ab) = a<sup>2</sup> b<sup>2</sup></span>
<!-- (a+b)(a-b) = a^2 - b^2 -->:</td>
<td align="right" width="7%">&nbsp;</td>
<td width="27%">
<div class="center larger"><span class="intbl"><em>2<sup>2</sup> (√x)<sup>2</sup></em><strong>(4x)(2+√x)</strong></span></div>
<!-- 2^2-(SQRx)^2/(4-x)(2+SQRx) --></td>
</tr>
<tr>
<td align="right" width="66%">&nbsp;</td>
<td align="right" width="7%">&nbsp;</td>
<td width="27%">&nbsp;</td>
</tr>
<tr>
<td align="right" width="66%">Simplify top further:</td>
<td align="right" width="7%">&nbsp;</td>
<td width="27%">
<div class="center larger"><span class="intbl"><em>4x</em><strong>(4x)(2+√x)</strong></span></div>
<!-- 4-x/(4-x)(2+SQRx) --></td>
</tr>
<tr>
<td align="right" width="66%">&nbsp;</td>
<td align="right" width="7%">&nbsp;</td>
<td width="27%">&nbsp;</td>
</tr>
<tr>
<td align="right" width="66%">Cancel (4x) from top and bottom: </td>
<td align="right" width="7%">&nbsp;</td>
<td width="27%">
<div class="center larger"><span class="intbl"><em>1</em><strong>2+√x</strong></span></div>
<!-- 1/2+SQRx --></td>
</tr>
</tbody></table>
<p>So, now we have:</p>
<div class="center larger"><span class="lim"><em>lim</em><strong>x→4</strong></span> <span class="intbl"><em>2√x</em><strong>4x</strong></span> = <span class="lim"><em>lim</em><strong>x→4</strong></span> <span class="intbl"><em>1</em><strong>2+√x</strong></span> = <span class="intbl"><em>1</em><strong>2+√4</strong></span> = <span class="intbl"><em>1</em><strong>4</strong></span></div>
<!-- LIM[x->4] 2-SQRx/4-x = LIM[x->4] 1/2+SQRx = 1/2+SQR4 = 1/4 -->
<p><b>Done!</b></p>
<p>&nbsp;</p>
<h3>4. Infinite Limits and Rational Functions</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">A <a href="../algebra/rational-expression.html">Rational Function</a> is one that is the ratio of two polynomials:</td>
<td>&nbsp;</td>
<td>
<div class="center larger">f(x) = <span class="intbl"><em>P(x)</em><strong>Q(x)</strong></span></div>
<!-- f(x) = P(x)/Q(x) --></td>
</tr>
<tr>
<td style="text-align:right;">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td style="text-align:right;">For example, here <i><b>P(x) = x<sup>3 </sup>+ 2x 1</b></i>, and <i><b>Q(x) = 6x<sup>2</sup></b></i>:</td>
<td>&nbsp;</td>
<td>
<div class="center larger"><span class="intbl"><em>x<sup>3</sup> + 2x 1</em><strong>6x<sup>2</sup></strong></span></div>
<!-- x^3~+2x-1/6x^2 --></td>
</tr>
</tbody></table>
<p>By finding the overall <a href="../algebra/degree-expression.html">Degree of the Function</a> we can find out whether the function's limit is 0, Infinity, -Infinity, or easily calculated from the coefficients.</p>
<p class="center larger">Read more at <a href="limits-infinity.html">Limits To Infinity</a>.</p>
<p>&nbsp;</p>
<h3>5. <span class="center">L'Hôpital's Rule</span></h3>
<p><span class="center">L'Hôpital's Rule</span> can help us evaluate limits that at first seem to be "indeterminate", such as <span class="intbl"><em>0</em><strong>0</strong></span> and <span class="intbl"><em></em><strong></strong></span>.</p>
<p class="center larger">Read more at <a href="l-hopitals-rule.html">L'Hôpital's Rule</a>.</p>
<p>&nbsp;</p>
<h3>6. Formal Method</h3>
<p>The formal method sets about proving that we can get <b>as close as we want</b> to the answer by making "x" close to "a".</p>
<p class="center larger">Read more at <a href="limits-formal.html">Limits (Formal Definition)</a></p>
<p>&nbsp;</p>
<div class="questions">
<script>
getQ(6770, 6771, 6772, 6773, 6774, 6775, 6776, 6777, 6778, 6779);
</script>&nbsp; </div>
<div class="related">
<a href="limits-infinity.html">Limits To Infinity</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits-evaluating.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
</html>