Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

324 lines
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:54 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Introduction to Calculus</title>
<script language="JavaScript" type="text/javascript">reSpell=[["meters","metres"],["traveling","travelling"]];</script>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Introduction to Calculus</h1>
<p class="center">Calculus is all about <i><b>changes</b></i>.</p>
<table width="100%">
<tbody>
<tr>
<td><img src="images/speedometer-0.jpg" alt="speedometer" height="102" width="150"></td>
<td>
<p>Sam and Alex are traveling in the car ... but the speedometer is broken.</p></td>
</tr>
</tbody></table>
<div class="tbl">
<div class="row">
<div class="lt">
Alex:
</div>
<div class="rtlt">
"Hey Sam! How fast are we going now?"
</div>
</div>
<div class="row">
<div class="lt">
Sam:
</div>
<div class="rtlt">
<p>"Wait a minute ..."</p>
<p>"Well in the last minute we went 1.2 km, so we are going:"</p>
<p class="center large">1.2 km per minute x 60 minutes in an hour = <b>72 km/h</b></p>
</div>
</div>
<div class="row">
<div class="lt">
Alex:
</div>
<div class="rtlt">
<p>"No, Sam! Not our <b>average</b> for the last minute, or even the last second, I want to know our speed RIGHT NOW."</p>
</div>
</div>
<div class="row">
<div class="lt">
Sam:
</div>
<div class="rtlt">
<p>"OK, let us measure it up here ... at this road sign... NOW!"</p>
<p class="center"><img src="images/road.jpg" alt="road" height="167" width="360"></p>
<p>"OK, we were AT the sign for <b>zero seconds</b>, and the distance was ... <b>zero meters</b>!"</p>
<p class="center">The speed is 0m / 0s = 0/0 = <b>I Don't Know</b>!</p>
<p>"I can't calculate it, Alex! I need to know <b>some</b> distance over <b>some</b> time, and you are saying the time should be zero? Can't be done."</p>
</div>
</div>
</div>
<p>&nbsp;</p>
<div class="center80">
<p>That is pretty amazing ... you'd think it is easy to work out the speed of a car at any point in time, but it isn't.</p>
<p>Even the speedometer of a car just shows us an <b>average</b> of how fast we were going for the last (very short) amount of time.</p>
</div>
<h2>How About Getting Real Close</h2>
<p>But our story is not finished yet!</p>
<p>Sam and Alex get out of the car, because they have arrived on location. Sam is about to do a stunt:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/jump-1.svg" alt="jump t=1" height="120" width="136"></td>
<td>&nbsp;</td>
<td>
<h3>Sam will do a jump off a 20 m building.</h3>
<h3>Alex, as photographer, asks:</h3>
<h3 class="center">"How fast will you be falling after 1 second?"</h3></td>
</tr>
</tbody></table>
<p>Sam uses this simplified formula to find <b>the distance fallen</b>:</p>
<p class="center"><span class="large">d = 5t<sup>2</sup></span></p>
<ul>
<li>d = distance fallen, in meters</li>
<li>t = time from jump, in seconds</li>
</ul>
<p><i>(Note: the formula&nbsp;is a simpler version of falling due to <a href="../physics/gravity.html">gravity</a>: d = ½gt<sup>2</sup>)</i></p>
<div class="example">
<p>Example: at 1 second Sam has fallen</p>
<p class="center"><b>d = 5t<sup>2</sup> = 5 × 1<sup>2</sup> = 5 m</b></p>
</div>
<p>But how <b>fast</b> is that? Speed is distance over time:</p>
<p class="center large">Speed = <span class="intbl"><em>distance</em><strong>time</strong></span></p>
<p>So at 1 second:</p>
<p class="center large">Speed = <span class="intbl"><em>5 m</em><strong>1 second</strong></span> = 5 m/s</p>
<p>"BUT", says Alex, "again that is an <b>average speed</b>, since you started the jump, ... I want to know the speed at <b>exactly</b> 1 second, so I can set up the camera properly."</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/jump-2.svg" alt="jump from t=1 to t=1" height="163" width="212"></p>
<p>&nbsp;</p>
<p class="center ">Well ... at <b>exactly 1 second</b> the speed is:</p>
<p class="center large">Speed = <span class="intbl"><em>5 5 m</em><strong>1 1 s</strong></span> = <span class="intbl"><em>0 m</em><strong>0 s</strong></span> = ???</p>
<div style="clear:both"></div>
<p>So again Sam has a problem.</p>
<div class="center80">
<p>Think about it ... how do we figure out a speed at an exact instant in time?</p>
<p>What is the distance? What is the time difference?</p>
<p>They are both <b>zero</b>, giving us nothing to calculate with!</p>
</div>
<p>But Sam has an idea ... invent a time <b>so short it won't matter</b>.</p>
<p>Sam won't even give it a value, and will just call it "Δt" (called "delta t").</p>
<p>So Sam works out the difference in distance between <b>t</b> and <b>t+Δt</b></p>
<div class="center80">
<p>At <b>1 second</b> Sam has fallen</p>
<p class="center large">5t<sup>2</sup> = 5 × (1)<sup>2</sup> = 5 m</p>
<p>&nbsp;</p>
<p>At <b>(1+Δt) seconds</b> Sam has fallen</p>
<p class="center large">5t<sup>2</sup> = 5 × (1+Δt)<sup>2</sup> m</p>
<p>&nbsp;</p>
<p>We can <a href="../algebra/expanding.html">expand</a> <b>(1+Δt)<sup>2</sup></b>:</p>
<div class="tbl">
<div class="row"><span class="left">(1+Δt)<sup>2</sup></span><span class="right">= (1+Δt)(1+Δt)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 1 + 2Δt + (Δt)<sup>2</sup></span></div>
</div>
<p>&nbsp;</p>
<p>So at <b>(1+Δt) seconds</b> Sam has fallen</p>
<div class="tbl">
<div class="row"><span class="left">d</span><span class="right">= 5 × (1+2Δt+(Δt)<sup>2</sup>) m</span></div>
<div class="row"><span class="left">d</span><span class="right">= <b>5 + 10Δt + 5(Δt)<sup>2</sup> m</b></span></div>
</div>
<p>&nbsp;</p>
<p class="center"><img src="images/jump-4.svg" alt="jump from t=1 to t=1 + delta t" height="163" width="308"></p>
<p>&nbsp;</p>
<p>In Summary:</p>
<div class="tbl">
<div class="row"><span class="left">At 1 second:</span><span class="right">d = 5 m</span></div>
<div class="row"><span class="left">At (1+Δt) seconds:</span><span class="right">d = <b>5 + 10Δt + 5(Δt)<sup>2</sup> m</b></span></div>
</div>
<p>&nbsp;</p>
<p>So between <b>1 second</b> and <b>(1+Δt) seconds</b> we get:</p>
<div class="tbl">
<div class="row"><span class="left"><span class="center">Change in d</span></span><span class="right">= 5 + 10Δt + 5(Δt)<sup>2</sup> 5 m </span></div>
</div>
<p>&nbsp;</p>
<p>Change in distance over time:</p>
<div class="tbl">
<div class="row"><span class="left">Speed</span><span class="right">
= <span class="intbl"><em>5 + 10Δt + 5(Δt)<sup>2</sup> 5 m</em>
<strong>Δt s</strong></span>
</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">
= <span class="intbl"><em>10Δt + 5(Δt)<sup>2</sup> m</em>
<strong>Δt s</strong></span>
</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= <b>10 + 5Δt</b> m/s</span></div>
</div>
<p>&nbsp;</p>
<p>So the speed is <span class="large">10 <span class="center">+ 5Δt </span>m/s</span>, and Sam thinks about that <b>Δt</b> value ... he wants <span class="center"><b>Δt</b></span> to be so small it won't matter ... so he imagines it shrinking towards <b>zero</b> and he gets:</p>
<p>&nbsp;</p>
<p class="center large">Speed = 10 m/s</p>
<p>&nbsp;</p></div>
<p>Wow! Sam got an answer!</p>
<p>&nbsp;</p>
<p><b><i>Sam</i>: "I will be falling at exactly 10 m/s"</b></p>
<p><b><i>Alex</i>: "I thought you said you couldn't calculate it?"</b></p>
<p><b><i>Sam</i>: "That was before I used Calculus!"</b></p>
<p>&nbsp;</p>
<p class="large">Yes, indeed, that was Calculus.</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/small-stones.jpg" alt="small stones" height="150" width="200"></p>
<p><b>The word Calculus comes from Latin meaning "small stone".</b></p>
<p>· <a href="derivatives-introduction.html">Differential Calculus</a> cuts something into small pieces to find how it changes. <b><br>
</b></p>
<p>· <a href="integration-introduction.html">Integral Calculus</a> joins (integrates) the small pieces together to find how much there is.</p>
<p>&nbsp;</p>
<p>Sam used <b>Differential Calculus</b> to cut time and distance into such small pieces that a pure answer came out.</p>
<p class="fun">And Differential Calculus and Integral Calculus are like <b>inverses</b> of each other, similar to how multiplication and division are inverses, but that is something for us to discover later!</p>
<p>&nbsp;</p>
<p>So ... was Sam's result just luck? Does it work for other things?</p>
<p><b>Let's try doing this for the function y = x<sup>3</sup></b></p>
<p>This will be similar to the previous example, but we will just use a slope on a graph, no one has to jump for this one!</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-x3.svg" alt="graph of x^3" height="267" width="223"></p>
<h3>Example: What is the slope of the function y&nbsp;=&nbsp;x<sup>3</sup> at x=1 ?</h3>
<p>&nbsp;</p>
<div class="tbl">
<div class="row"><span class="left">At x = 1:</span><span class="right">y = 1<sup>3</sup> = 1</span></div>
<div class="row"><span class="left">At x = (1+Δx):</span><span class="right">y = (1+Δx)<sup>3</sup></span></div>
</div>
<p><br>
We can expand (1+Δx)<sup>3</sup> to 1 + 3Δx + 3(Δx)<sup>2</sup> + (Δx)<sup>3</sup>, and we get:</p>
<p class="center large">y = 1 + 3Δx + 3(Δx)<sup>2</sup> + (Δx)<sup>3</sup></p>
<p>&nbsp;</p>
<p>And the difference between the y values from x = 1 to x = 1+Δx is:</p>
<div class="tbl">
<div class="row"><span class="left"><span class="center">Change in y </span></span><span class="right"><span class="center">= 1 + 3Δx + 3(Δx)<sup>2</sup> + (Δx)<sup>3</sup> 1</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="center">= <b>3Δx + 3(Δx)<sup>2</sup> + (Δx)<sup>3</sup></b></span></span></div>
</div>
<p>&nbsp;</p>
<p>Now we can calculate slope:</p>
<div class="tbl">
<div class="row"><span class="left"><span class="large">Slope</span></span><span class="right">= <span class="large intbl">
<em>3Δx + 3(Δx)<sup>2</sup> + (Δx)<sup>3</sup></em>
<strong>Δx</strong>
</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="large">= <b>3 + 3Δx + (Δx)<sup>2</sup></b></span></span></div>
</div>
<p>&nbsp;</p>
<p>Once again, as <b>Δx</b> shrinks towards zero we are left with:</p>
<p class="center large"><b>Slope = 3</b></p>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-x3-slope.svg" alt="graph x^3 slope at (1, 1)" height="267" width="223"></p>
<p class="center">And here we see the graph of <b>y = x<sup>3</sup></b></p>
<p class="center">The slope is continually changing, but at the<br>
point<b> (1, 1)</b> we can draw a line tangent to the curve</p>
<p class="center">and find the slope there <b>really is 3</b>.</p>
<p class="center">(Count the squares if you want!)</p>
<div style="clear:both"></div>
<p>Question for you: what is the slope at the <b>point (2, 8)</b>?</p>
</div>
<h2>Try It Yourself!</h2>
<p>Go to the <a href="slope-function-point.html">Slope of a Function</a> page, put in the formula "x^3", then try to find the slope at the point (1, 1).</p>
<p>Zoom in closer and closer and see what value the slope is heading towards.</p>
<h2>Conclusion</h2>
<p>Calculus is about changes.</p>
<p><b>Differential calculus</b> cuts something into small pieces to find how it changes.</p>
<ul>
<li>Learn more at <a href="derivatives-introduction.html">Introduction to Derivatives</a></li>
</ul>
<p><b> Integral calculus</b> joins (integrates) the small pieces together to find how much there is.</p>
<ul>
<li>Learn more at <a href="integration-introduction.html">Introduction to Integration</a></li>
</ul>
<p>&nbsp;</p>
<div class="questions">6750, 6751, 6752, 6753, 6754, 6755, 6756, 6757, 6758, 6759</div>
<div class="related">
<a href="slope-function-point.html">Slope of a Function</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:55 GMT -->
</html>