new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
161 lines
6.6 KiB
HTML
161 lines
6.6 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/inflection-points.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:06 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Inflection Points</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Inflection Points </h1>
|
||
|
||
<p><span class="center">An Inflection Point </span>is where a curve changes from <b>Concave upward</b> to <b>Concave downward</b> (or vice versa)</p>
|
||
<p>So what is concave upward / downward ?</p>
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><b>Concave upward</b> is when the slope increases:</td>
|
||
<td> </td>
|
||
<td><img src="images/concave-upward.svg" alt="concave upward slope increases" height="149" width="234"></td>
|
||
</tr>
|
||
<tr>
|
||
<td><b>Concave downward</b> is when the slope decreases:</td>
|
||
<td> </td>
|
||
<td><img src="images/concave-downward.svg" alt="concave downward slope decreases" height="149" width="234"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>Here are some more examples:</p>
|
||
<p class="center"><img src="images/concave-examples.svg" alt="concave examples" height="157" width="418"></p>
|
||
<p>Learn more at <a href="concave-up-down-convex.html">Concave upward and Concave downward</a>.</p>
|
||
|
||
|
||
<h2>Finding where ...</h2>
|
||
|
||
<p>So our task is to find <b>where</b> a curve goes from concave upward to concave downward (or vice versa).</p>
|
||
<p class="center"><img src="images/inflection-points.svg" alt="inflection points" height="117" width="509"></p>
|
||
|
||
|
||
<h2>Calculus</h2>
|
||
|
||
<p><a href="derivatives-introduction.html">Derivatives</a> help us!</p>
|
||
<p>The derivative of a function gives the slope.</p>
|
||
<p>The <a href="second-derivative.html">second derivative</a> tells us if the slope increases or decreases.</p>
|
||
<ul>
|
||
<li>When the second derivative is <b>positive</b>, the function is <b>concave upward</b>.</li>
|
||
<li>When the second derivative is<b> negative</b>, the function is <b>concave downward</b>.</li>
|
||
</ul>
|
||
<p>And the inflection point is where it goes from <b>concave upward</b> to <b>concave downward</b> (or vice versa).</p>
|
||
<div class="example">
|
||
|
||
<h3>Example: y = 5x<sup>3</sup> + 2x<sup>2</sup> − 3x</h3>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/5x3-2x2-3x-concave.svg" alt="5x^3 2x^2 3x inflection point" height="243" width="188"></p>
|
||
<p>Let's work out the second derivative:</p>
|
||
<ul>
|
||
<li>The derivative is <b>y' = 15x<sup>2</sup> + 4x − 3</b></li>
|
||
<li>The second derivative is <b>y'' = 30x + 4</b></li>
|
||
</ul>
|
||
<p> </p>
|
||
<p>And <b>30x + 4</b> is negative up to x = −4/30 = −2/15, positive from there onwards. So:</p>
|
||
<div class="so"> f(x) is <b>concave downward</b> up to x = −2/15</div>
|
||
<div class="so">f(x) is <b>concave upward</b> from x = −2/15 on</div>
|
||
<p>And the inflection point is at x = −2/15</p>
|
||
</div>
|
||
<div class="center80">
|
||
|
||
<h3>A Quick Refresher on Derivatives</h3>
|
||
<p>In the previous example we took this:</p>
|
||
<p class="center larger">y = 5x<sup>3</sup> + 2x<sup>2</sup> − 3x</p>
|
||
<p>and came up with this derivative:</p>
|
||
<p class="center larger">y' = 15x<sup>2</sup> + 4x − 3</p>
|
||
<p>There are <b>rules</b> you can follow to find derivatives. We used the <a href="derivatives-rules.html">"Power Rule"</a>:</p>
|
||
<ul>
|
||
<li>x<sup>3</sup> has a slope of 3x<sup>2</sup>, so 5x<sup>3</sup> has a slope of 5(3x<sup>2</sup>) = 15x<sup>2</sup></li>
|
||
<li>x<sup>2</sup> has a slope of 2x, so 2x<sup>2</sup> has a slope of 2(2x) = 4x</li>
|
||
<li>The slope of the <b>line</b> 3x is 3</li>
|
||
</ul>
|
||
</div>
|
||
<p>Another example for you:</p>
|
||
<div class="example">
|
||
|
||
<h3>Example: y = x<sup>3</sup> − 6x<sup>2</sup> + 12x − 5</h3>
|
||
<p>The derivative is: y' = 3x<sup>2</sup> − 12x + 12</p>
|
||
<p>The second derivative is: y'' = 6x − 12</p>
|
||
<p> </p>
|
||
<p>And 6x − 12 is negative up to x = 2, positive from there onwards. So:</p>
|
||
<div class="so"> f(x) is <b>concave downward</b> up to x = 2</div>
|
||
<div class="so">f(x) is <b>concave upward</b> from x = 2 on</div>
|
||
<p>And the inflection point is at x = 2:</p>
|
||
<p class="center"><img src="images/x3-6x2-12x-5-inflection.svg" alt="x^3 6x^2 12x 5 inflection point" height="199" width="168"></p>
|
||
</div>
|
||
<p> </p>
|
||
|
||
<div class="related">
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/inflection-points.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:07 GMT -->
|
||
</html> |