Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

161 lines
6.6 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/inflection-points.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:06 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Inflection Points</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Inflection Points&nbsp;</h1>
<p><span class="center">An Inflection Point&nbsp;</span>is where a curve changes from <b>Concave upward</b> to <b>Concave downward</b> (or vice versa)</p>
<p>So what is concave upward / downward ?</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><b>Concave upward</b> is when the slope increases:</td>
<td>&nbsp;</td>
<td><img src="images/concave-upward.svg" alt="concave upward slope increases" height="149" width="234"></td>
</tr>
<tr>
<td><b>Concave downward</b> is when the slope decreases:</td>
<td>&nbsp;</td>
<td><img src="images/concave-downward.svg" alt="concave downward slope decreases" height="149" width="234"></td>
</tr>
</tbody></table>
<p>Here are some more examples:</p>
<p class="center"><img src="images/concave-examples.svg" alt="concave examples" height="157" width="418"></p>
<p>Learn more at <a href="concave-up-down-convex.html">Concave upward and Concave downward</a>.</p>
<h2>Finding where ...</h2>
<p>So our task is to find <b>where</b> a curve goes from concave upward to concave downward (or vice versa).</p>
<p class="center"><img src="images/inflection-points.svg" alt="inflection points" height="117" width="509"></p>
<h2>Calculus</h2>
<p><a href="derivatives-introduction.html">Derivatives</a> help us!</p>
<p>The derivative of a function gives the slope.</p>
<p>The <a href="second-derivative.html">second derivative</a> tells us if the slope increases or decreases.</p>
<ul>
<li>When the second derivative is <b>positive</b>, the function is <b>concave upward</b>.</li>
<li>When the second derivative is<b> negative</b>, the function is <b>concave downward</b>.</li>
</ul>
<p>And the inflection point is where it goes from <b>concave upward</b> to <b>concave downward</b> (or vice versa).</p>
<div class="example">
<h3>Example: y = 5x<sup>3</sup> + 2x<sup>2</sup> 3x</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/5x3-2x2-3x-concave.svg" alt="5x^3 2x^2 3x inflection point" height="243" width="188"></p>
<p>Let's work out the second derivative:</p>
<ul>
<li>The derivative is <b>y' = 15x<sup>2</sup> + 4x 3</b></li>
<li>The second derivative is <b>y'' = 30x + 4</b></li>
</ul>
<p>&nbsp;</p>
<p>And <b>30x + 4</b> is negative up to x = 4/30 = 2/15, positive from there onwards. So:</p>
<div class="so"> f(x) is <b>concave downward</b> up to x = 2/15</div>
<div class="so">f(x) is <b>concave upward</b> from x = 2/15 on</div>
<p>And the inflection point is at x = 2/15</p>
</div>
<div class="center80">
<h3>A Quick Refresher on Derivatives</h3>
<p>In the previous example we took this:</p>
<p class="center larger">y = 5x<sup>3</sup> + 2x<sup>2</sup> 3x</p>
<p>and came up with this derivative:</p>
<p class="center larger">y' = 15x<sup>2</sup> + 4x 3</p>
<p>There are <b>rules</b> you can follow to find derivatives. We used the <a href="derivatives-rules.html">"Power Rule"</a>:</p>
<ul>
<li>x<sup>3</sup> has a slope of 3x<sup>2</sup>, so 5x<sup>3</sup> has a slope of 5(3x<sup>2</sup>) = 15x<sup>2</sup></li>
<li>x<sup>2</sup> has a slope of 2x, so 2x<sup>2</sup> has a slope of 2(2x) = 4x</li>
<li>The slope of the <b>line</b> 3x is 3</li>
</ul>
</div>
<p>Another example for you:</p>
<div class="example">
<h3>Example: y = x<sup>3</sup> 6x<sup>2</sup> + 12x 5</h3>
<p>The derivative is: y' = 3x<sup>2</sup> 12x + 12</p>
<p>The second derivative is: y'' = 6x 12</p>
<p>&nbsp;</p>
<p>And 6x 12 is negative up to x = 2, positive from there onwards. So:</p>
<div class="so"> f(x) is <b>concave downward</b> up to x = 2</div>
<div class="so">f(x) is <b>concave upward</b> from x = 2 on</div>
<p>And the inflection point is at x = 2:</p>
<p class="center"><img src="images/x3-6x2-12x-5-inflection.svg" alt="x^3 6x^2 12x 5 inflection point" height="199" width="168"></p>
</div>
<p>&nbsp;</p>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/inflection-points.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:07 GMT -->
</html>