lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/differential-equations-second-order.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

447 lines
28 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-second-order.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:29 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Second Order Differential Equations</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<script>Author='Les Bill Gates and Rod Pierce';</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1>Second Order Differential Equations</h1>
<div class="def">
<p>Here we learn how to solve equations of this type:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
</div>
<h2><span class="center">Differential Equation</span></h2>
<p>A <span class="center">Differential Equation is a</span>n equation with a <a href="../sets/function.html">function</a> and one or more of its <a href="derivatives-introduction.html">derivatives</a>:</p>
<p class="center"><img src="images/diff-eq-1.svg" alt="differential equation y + dy/dx = 5x" height="123" width="188" ><br>
Example: an equation with the function <b>y</b> and its
derivative<b> <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></b> &nbsp;</p>
<h2>Order</h2>
<p>The Order is the <b>highest derivative</b> (is it a first derivative? a <a href="second-derivative.html">second derivative</a>? etc):</p>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> + y<sup>2</sup> = 5x</p>
<p>It has only the first derivative <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> , so is "First Order"</p>
</div>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + xy = sin(x)</p>
<p>This has a second derivative <span class="intbl"> <em>d<sup>2</sup>y</em> <strong>dx<sup>2</sup></strong> </span> , so is "Second Order" or "Order 2"</p>
</div>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"><em>d<sup>3</sup>y</em><strong>dx<sup>3</sup></strong></span> + x<span class="intbl"><em>dy</em><strong>dx</strong></span> + y = e<sup>x</sup></p>
<p>This has a third derivative <span class="intbl"> <em>d<sup>3</sup>y</em> <strong>dx<sup>3</sup></strong> </span> which outranks the <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> , so is "Third Order" or "Order 3"</p>
</div>
<h3>Before tackling second order differential equations, make sure you are familiar with the various methods for <a href="differential-equations-solution-guide.html">solving first order differential equations</a>.</h3>
<h2>Second Order Differential Equations</h2>
<div class="def">
<p>We can solve a second order differential equation of the type:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + P(x)<span class="intbl"><em>dy</em><strong>dx</strong></span> + Q(x)y
= f(x)</p>
<p>where P(x), Q(x) and f(x) are functions of x, by using:</p>
<p class="dotpoint"><a href="differential-equations-undetermined-coefficients.html">Undetermined Coefficients</a> which only works when f(x) is a polynomial, exponential, sine, cosine or a linear combination of those.</p>
<p class="dotpoint"><a href="differential-equations-variation-parameters.html">Variation of Parameters</a> which is a little messier but works on a wider range of functions.</p>
</div>
<p>But here we begin by learning the case where <b>f(x) = 0</b> (this makes it "homogeneous"):</p>
<p class="center larger"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + P(x)<span class="intbl"><em>dy</em><strong>dx</strong></span> + Q(x)y
= 0</p>
<p>and also where the functions P(X) and Q(x) are constants <b>p</b> and <b>q</b>:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
<p>Let's learn to solve them!</p>
<p>&nbsp;</p>
<h3><b><i>e</i></b> to the rescue</h3>
<p>We are going to use a special property of the <a href="derivatives-rules.html">derivative</a> of the <a href="../sets/function-exponential.html">exponential function</a>:</p>
<p>At any point the slope (derivative) of <i><b>e</b></i><sup>x</sup> equals the value of <i><b>e</b></i><sup>x</sup> :</p>
<p class="center"><img src="../sets/images/function-exponential-slopes.svg" alt="natural exponential function" height="161" width="263" ></p>
<p>And when we introduce a value "r" like this:</p>
<p class="center large">f(x) = e<sup>rx</sup></p>
<p>We find:</p>
<ul>
<li>the first derivative is f'(x) = re<sup>rx</sup></li>
<li>the second derivative is f''(x) = r<sup>2</sup>e<sup>rx</sup></li>
</ul>
<p>In other words, the first and second derivatives of f(x) are both <b>multiples</b> of f(x)</p>
<p>This is going to help us a lot!</p>
<div class="example">
<h3>Example 1: Solve</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + <span class="intbl"><em>dy</em><strong>dx</strong></span> 6y = 0</p>
<p>Let y = e<sup>rx</sup> so we get:</p>
<ul>
<li><span class="intbl"><em>dy</em><strong>dx</strong></span> = re<sup>rx</sup></li>
<li><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> = r<sup>2</sup>e<sup>rx</sup></li>
</ul>
<p>Substitute these into the equation above:</p>
<p class="center large">r<sup>2</sup>e<sup>rx</sup> + re<sup>rx</sup> 6e<sup>rx</sup> = 0</p>
<p>Simplify:</p>
<p class="center large">e<sup>rx</sup>(r<sup>2</sup> + r 6) = 0</p>
<p class="center large">r<sup>2</sup> + r 6 = 0</p>
<p>We have reduced the differential equation to an ordinary <a href="../algebra/quadratic-equation.html">quadratic equation</a>!</p>
<p>This quadratic equation is given the special name of <b>characteristic equation</b>.</p>
<p>We can factor this one to:</p>
<p class="center large">(r 2)(r + 3) = 0</p>
<p>So <b>r = 2 or 3</b></p>
<p>And so we have two solutions:</p>
<p class="center large">y = e<sup>2x</sup></p>
<p class="center large">y = e<sup>3x</sup></p>
<p>But thats not the final answer because we can combine different <b>multiples</b> of these two answers to get a more general solution:</p>
<p class="center large">y = Ae<sup>2x</sup> + Be<sup>3x</sup></p>
<h3>Check</h3>
<p>Let us check that answer. First take derivatives:</p>
<p class="center"><span class="center large">y = Ae<sup>2x</sup> + Be<sup>3x</sup></span></p>
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> = 2Ae<sup>2x</sup> 3Be<sup>3x</sup></p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> = 4Ae<sup>2x</sup> + 9Be<sup>3x</sup></p>
<p>Now substitute into the original equation:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + <span class="intbl"><em>dy</em><strong>dx</strong></span> 6y = 0</p>
<p class="center large">(4Ae<sup>2x</sup> + 9Be<sup>3x</sup>) + (2Ae<sup>2x</sup> 3Be<sup>3x</sup>) 6(Ae<sup>2x</sup> + Be<sup>3x</sup>) = 0</p>
<p class="center large">4Ae<sup>2x</sup> + 9Be<sup>3x</sup> + 2Ae<sup>2x</sup> 3Be<sup>3x</sup> 6Ae<sup>2x</sup> 6Be<sup>3x</sup> = 0</p>
<p class="center large">4Ae<sup>2x</sup> + 2Ae<sup>2x</sup> 6Ae<sup>2x</sup>+ 9Be<sup>3x</sup> 3Be<sup>3x</sup> 6Be<sup>3x</sup> = 0</p>
<p class="center large">0 = 0</p>
<p>It worked!</p>
</div>
<h2>So, does this method work generally?</h2>
<p>Well, yes and no. The answer to this question depends on the constants <b>p</b> and <b>q</b>.</p>
<p>With <b>y = e<sup>rx</sup></b> as a solution of the differential equation:</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
<p>we get:</p>
<p class="center large">r<sup>2</sup>e<sup>rx</sup> + pre<sup>rx</sup> + qe<sup>rx</sup> = 0</p>
<p class="center large">e<sup>rx</sup>(r<sup>2</sup> + pr + q) = 0</p>
<p class="center large">r<sup>2</sup> + pr + q = 0</p>
<p>This is a <a href="../algebra/quadratic-equation.html">quadratic equation</a>, and there can be three types of answer:</p>
<ul>
<li>two real roots</li>
<li>one real root (i.e. both real roots are the same)</li>
<li>two complex roots</li>
</ul>
<p>How we solve it depends which type!</p>
<p>We can easily find which type by calculating the <a href="../algebra/quadratic-equation.html">discriminant</a> <b>p<sup>2</sup> 4q</b>. When it is</p>
<ul>
<li>positive we get two real roots</li>
<li>zero we get one real root</li>
<li>negative we get two complex roots</li>
</ul>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../algebra/images/quadratic-graph.svg" alt="Quadratic Graph" height="140" width="175" ></p>
<h2>Two Real Roots</h2>
<p>When the discriminant <b>p<sup>2</sup> 4q</b> is <b>positive</b> we can go straight from the differential equation</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
<p>through the "characteristic equation":</p>
<p class="center large">r<sup>2</sup> + pr + q = 0</p>
<p>to the general solution with two real roots <b>r<sub>1</sub></b> and <b>r<sub>2</sub></b>:</p>
<p class="center large">y = Ae<sup>r<sub>1</sub>x</sup> + Be<sup>r<sub>2</sub>x</sup></p>
<div class="example">
<h3><b>Example 2:</b> Solve</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 9<span class="intbl"><em>dy</em><strong>dx</strong></span> + 20y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">r<sup>2</sup> 9r<strong> </strong>+ 20 = 0</p>
<p>Factor:</p>
<p class="center large">(r 4)(r 5) = 0</p>
<p class="center large">r = 4 or 5</p>
<p>So the general solution of our differential equation is:</p>
<p class="center large">y = Ae<sup>4x</sup> + Be<sup>5x</sup></p>
<p>And here are some sample values:</p>
<p class="center"><img src="images/diff-eq-2nd-order-a.svg" alt="y = Ae^4x + Be^5x" height="340" width="550" ></p>
</div>
<div class="example">
<h3><b>Example 3:</b> Solve</h3>
<p class="center large">6<span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + 5<span class="intbl"><em>dy</em><strong>dx</strong></span> 6y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">6r<sup>2</sup> + 5r<strong> </strong> 6 = 0</p>
<p>Factor:</p>
<p class="center large">(3r 2)(2r + 3) = 0</p>
<p class="center large">r = <span class="intbl"><em>2</em><strong>3</strong></span> or <span class="intbl"><em>3</em><strong>2</strong></span></p>
<p>So the general solution of our differential equation is:</p>
<p class="center large">y = Ae<sup>(<span class="intbl"><em>2</em><strong>3</strong></span>x)</sup> + Be<sup>(<span class="intbl"><em>3</em><strong>2</strong></span>x)</sup></p>
</div>
<div class="example">
<h3><b>Example 4:</b> Solve</h3>
<p class="center large">9<span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">9r<sup>2</sup> 6r<strong> </strong> 1 = 0</p>
<p>This does not factor easily, so we use the <a href="../algebra/quadratic-equation.html">quadratic equation formula</a>:</p>
<p class="center larger">x = <span class="intbl"> <em>b ± √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong></span></p>
<p>with a = 9, b = 6 and c = 1</p>
<p class="center larger">x = <span class="intbl"> <em>(6) ± √((6)<sup>2 </sup> 4×9×(1))</em> <strong>2×9</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>6 ± √(36+ 36)</em> <strong>18</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>6 ± 6√2</em> <strong>18</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>1 ± √2</em> <strong>3</strong></span></p>
<p>So the general solution of the differential equation is</p>
<p class="center large">y = Ae<sup>(<span class="intbl"><em>1 + √2</em> <strong>3</strong></span>)x</sup> + Be<sup>(<span class="intbl"><em>1 √2</em> <strong>3</strong></span>)x</sup></p>
</div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../algebra/images/quadratic-graph-1root.svg" alt="Quadratic Graph" height="140" width="175" ></p>
<h2>One Real Root</h2>
<p>When the discriminant <b>p<sup>2</sup> 4q</b> is <b>zero</b> we get one real root (i.e. both real roots are equal).</p>
<p>Here are some examples:</p>
<div class="example">
<h3><b>Example 5:</b> Solve</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 10<span class="intbl"><em>dy</em><strong>dx</strong></span> + 25y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">r<sup>2</sup> 10r<strong> </strong>+ 25 = 0</p>
<p>Factor:</p>
<p class="center large">(r 5)(r 5) = 0</p>
<p class="center large">r = 5<span class="intbl"><strong></strong></span></p>
<p>So we have one solution: <b>y = e<sup>5x</sup></b></p>
<p>&nbsp;</p>
<p class="larger"><b>BUT</b> when <b>e<sup>5x</sup></b> is a solution, then <b>xe<sup>5x</sup></b> is <b>also</b> a solution!</p>
<div class="center80">
<p>Why? I can show you:</p>
<p>y = xe<sup>5x</sup><br></p>
<p><span class="intbl"><em>dy</em><strong>dx</strong></span> = e<sup>5x</sup> + 5xe<sup>5x</sup></p>
<p><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> = 5e<sup>5x</sup> + 5e<sup>5x</sup> + 25xe<sup>5x</sup></p>
<p>So</p>
<p><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 10<span class="intbl"><em>dy</em><strong>dx</strong></span> + 25y</p>
<p>= 5e<sup>5x</sup> + 5e<sup>5x</sup> + 25xe<sup>5x</sup> 10(e<sup>5x</sup> + 5xe<sup>5x</sup>) + 25xe<sup>5x</sup></p>
<p>= (5e<sup>5x</sup> + 5e<sup>5x</sup> 10e<sup>5x</sup>) + (25xe<sup>5x</sup> 50xe<sup>5x</sup> + 25xe<sup>5x</sup>) = 0</p>
</div>
<p>So, in this case our solution is:</p>
<p class="center large">y = Ae<sup>5x</sup> + Bxe<sup>5x</sup></p>
</div>
<h3>&nbsp;</h3>
<h3>How does this work in the general case?</h3>
<p>With <b>y = xe<sup>rx</sup></b> we get the derivatives:</p>
<ul>
<li><span class="intbl"><em>dy</em><strong>dx</strong></span> = e<sup>rx</sup> + rxe<sup>rx</sup></li>
<li><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> = re<sup>rx</sup> + re<sup>rx</sup> + r<sup>2</sup>xe<sup>rx</sup></li>
</ul>
<p>So</p>
<p><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p <span class="intbl"><em>dy</em><strong>dx</strong></span> + qy</p>
<p>= (re<sup>rx</sup> + re<sup>rx</sup> + r<sup>2</sup>xe<sup>rx</sup>) + p( e<sup>rx</sup> + rxe<sup>rx</sup> ) + q( xe<sup>rx</sup> )</p>
<p>= e<sup>rx</sup>(r + r + r<sup>2</sup>x + p + prx + qx)</p>
<p>= e<sup>rx</sup>(2r + p + x(r<sup>2</sup> + pr + q))</p>
<p>= e<sup>rx</sup>(2r + p) because we already know that r<sup>2</sup> + pr + q = 0</p>
<p>&nbsp;</p>
<p>And when <b>r<sup>2</sup> + pr + q</b> has a repeated root, then <b>r = <span class="intbl"><em>p</em>2</span></b> and <b>2r + p = 0</b></p>
<p>So if r is a repeated root of the characteristic equation, then the general solution is</p>
<p class="center large">y = Ae<sup>rx</sup> + Bxe<sup>rx</sup></p>
<p>Let's try another example to see how quickly we can get a solution:</p>
<div class="example">
<h3><b>Example 6:</b> Solve</h3>
<p class="center large">4<span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + 4<span class="intbl"><em>dy</em><strong>dx</strong></span> + y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">4r<sup>2</sup> + 4r<strong> </strong>+ 1 = 0</p>
<p>Then:</p>
<p class="center large">(2r + 1)<sup>2</sup> = 0</p>
<p class="center large">r = <span class="intbl"><em>1</em><strong>2</strong></span></p>
<p>So the solution of the differential equation is:</p>
<p class="center large">y = Ae<sup>(−½)x</sup> + Bxe<sup>(−½)x</sup></p>
</div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="../algebra/images/quadratic-graph-complex.svg" alt="Quadratic Graph with Complex Roots" height="140" width="175" ></p>
<h2>Complex roots</h2>
<p>When the discriminant <b>p<sup>2</sup> 4q</b> is <b>negative</b> we get <a href="../numbers/complex-numbers.html">complex</a> roots.</p>
<p>Lets try an example to help us work out how to do this type:</p>
<div class="example">
<h3><b>Example 7:</b> Solve</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 4<span class="intbl"><em>dy</em><strong>dx</strong></span> + 13y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">r<sup>2</sup> 4r<strong> </strong>+ 13 = 0</p>
<p>This does not factor, so we use the <a href="../algebra/quadratic-equation.html">quadratic equation formula</a>:</p>
<p class="center larger">x = <span class="intbl"> <em>b ± √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong></span></p>
<p>with a = 1, b = 4 and c = 13</p>
<p class="center larger">x = <span class="intbl"> <em>(4) ± √((4)<sup>2 </sup> 4×1×13)</em> <strong>2×1</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>4 ± √(16 52)</em> <strong>2</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>4 ± √(36)</em> <strong>2</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>4 ± 6i</em> <strong>2</strong></span></p>
<p class="center larger">x = 2 ± 3i</p>
<p>If we follow the method used for two real roots, then we can try the solution:</p>
<p class="center large">y = Ae<sup>(2+3i)x</sup> + Be<sup>(23i)x</sup><br></p>
<p>We can simplify this since e<sup>2x</sup> is a common factor:</p>
<p class="center large">y = e<sup>2x</sup>( Ae<sup>3ix</sup> + Be<sup>3ix</sup> )</p>
<p>But we haven't finished yet ... !</p>
<a href="../algebra/eulers-formula.html">Euler's formula</a> tells us that:
<p class="center large">e<sup>ix</sup> = cos(x) + i sin(x)</p>
<p>So now we can follow a whole new avenue to (eventually) make things simpler.</p>
<p>Looking just at the "A plus B" part:</p>
<p class="center large">Ae<sup>3ix</sup> + Be<sup>3ix</sup></p>
<p class="center large">A(cos(3x) + i sin(3x)) + B(cos(3x) + i sin(3x))</p>
<p class="center large">Acos(3x) + Bcos(3x) + i(Asin(3x) + Bsin(3x))</p>
<p>Now apply the <a href="../algebra/trigonometric-identities.html">Trigonometric Identities</a>: cos(−θ)=cos(θ) and sin(−θ)=sin(θ):</p>
<center>
<p class="center large">Acos(3x) + Bcos(3x) + i(Asin(3x) Bsin(3x)</p>
</center>
<p class="center large">(A+B)cos(3x) + i(AB)sin(3x)</p>
<p>Replace A+B by C, and AB by D:</p>
<p class="center large">Ccos(3x) + iDsin(3x)</p>
<p>And we get the solution:<br></p>
<p class="center large">y = e<sup>2x</sup>( Ccos(3x) + iDsin(3x) )</p>
<p class="center large">&nbsp;</p>
<h3>Check</h3>
<p>We have our answer, but maybe we should check that it does indeed satisfy the original equation:</p>
<p>y = e<sup>2x</sup>( Ccos(3x) + iDsin(3x) )</p>
<p><span class="intbl"><em>dy</em><strong>dx</strong></span> = e<sup>2x</sup>( 3Csin(3x)+3iDcos(3x) ) + 2e<sup>2x</sup>( Ccos(3x)+iDsin(3x) )</p>
<p><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> = e<sup>2x</sup>( (6C+9iD)sin(3x) + (9C+6iD)cos(3x)) + 2e<sup>2x</sup>(2C+3iD)cos(3x) + (3C+2iD)sin(3x) )</p>
<p>Substitute:</p>
<p><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 4<span class="intbl"><em>dy</em><strong>dx</strong></span> + 13y = e<sup>2x</sup>( (6C+9iD)sin(3x) + (9C+6iD)cos(3x)) + 2e<sup>2x</sup>(2C+3iD)cos(3x) + (3C+2iD)sin(3x) ) 4( e<sup>2x</sup>( 3Csin(3x)+3iDcos(3x) ) + 2e<sup>2x</sup>( Ccos(3x)+iDsin(3x) ) ) + 13( e<sup>2x</sup>(Ccos(3x) + iDsin(3x)) )<br></p>
<p>... hey, why don't YOU try adding up all the terms to see if they equal zero ... if not please <a href="../contact.html">let me know</a>, OK?</p>
</div>
<p><br></p>
<h3>How do we generalize this?</h3>
<p>Generally, when we solve the characteristic equation with complex roots, we will get two solutions <b>r<sub>1</sub> = v + wi</b> and <b>r<sub>2</sub> = v wi</b></p>
<p>So the general solution of the differential equation is</p>
<p class="center large">y = e<sup>vx</sup> ( Ccos(wx) + iDsin(wx) )</p>
<div class="example">
<h3><b>Example 8:</b> Solve</h3>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> 6<span class="intbl"><em>dy</em><strong>dx</strong></span> + 25y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">r<sup>2</sup> 6r<strong> </strong>+ 25 = 0</p>
<p>Use the quadratic equation formula:</p>
<p class="center larger">x = <span class="intbl"> <em>b ± √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong></span></p>
<p>with a = 1, b = 6 and c = 25</p>
<p class="center larger">x = <span class="intbl"> <em>(6) ± √((6)<sup>2 </sup> 4×1×25)</em> <strong>2×1</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>6 ± √(36 100)</em> <strong>2</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>6 ± √(64)</em> <strong>2</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>6 ± 8i</em> <strong>2</strong></span></p>
<p class="center larger">x = 3 ± 4i</p>
<p>And we get the solution:<br></p>
<p class="center large">y = e<sup>3x</sup>(Ccos(4x) + iDsin(4x))</p>
<p><br></p>
</div>
<p><br></p>
<div class="example">
<h3><b>Example 9:</b> Solve</h3>
<p class="center large">9<span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + 12<span class="intbl"><em>dy</em><strong>dx</strong></span> + 29y = 0</p>
<p>The characteristic equation is:<br></p>
<p class="center large">9r<sup>2</sup> + 12r<strong> </strong>+ 29 = 0</p>
<p>Use the quadratic equation formula:</p>
<p class="center larger">x = <span class="intbl"> <em>b ± √(b<sup>2 </sup> 4ac)</em> <strong>2a</strong></span></p>
<p>with a = 9, b = 12 and c = 29</p>
<p class="center larger">x = <span class="intbl"> <em>12 ± √(12<sup>2 </sup> 4×9×29)</em> <strong>2×9</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>12 ± √(144 1044)</em> <strong>18</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>12 ± √(900)</em> <strong>18</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>12 ± 30i</em> <strong>18</strong></span></p>
<p class="center larger">x = <span class="intbl"><em>2</em><strong>3</strong></span>
± <span class="intbl"><em>5</em><strong>3</strong></span>i</p>
<p>And we get the solution:<br></p>
<p class="center large">y = e<sup>(<span class="intbl"><em>2</em><strong>3</strong></span>)x</sup>(Ccos(<span class="intbl"><em>5</em><strong>3</strong></span>x) + iDsin(<span class="intbl"><em>5</em><strong>3</strong></span>x))</p>
<p><br></p>
</div>
<h2>Summary</h2>
<p>To solve a linear second order differential equation of the form</p>
<p class="center large"><span class="intbl"><em>d<sup>2</sup>y</em><strong>dx<sup>2</sup></strong></span> + p<span class="intbl"><em>dy</em><strong>dx</strong></span> + qy = 0</p>
<p>where <b>p</b> and <b>q</b> are constants, we must find the roots of the characteristic equation</p>
<p class="center large">r<sup>2</sup> + pr + q = 0</p>
<p>There are three cases, depending on the discriminant <b>p<sup>2</sup> - 4q</b>. When it is</p>
<p class="dotpoint"><b>positive</b> we get two real roots, and the solution is</p>
<p class="center large">y = Ae<sup>r<sub>1</sub>x</sup> + Be<sup>r<sub>2</sub>x</sup></p>
<p class="dotpoint"><b>zero</b> we get one real root, and the solution is</p>
<p class="center large">y = Ae<sup>rx</sup> + Bxe<sup>rx</sup></p>
<p class="dotpoint"><b>negative</b> we get two complex roots <b>r<sub>1</sub> = v + wi</b> and <b>r<sub>2</sub> = v wi</b>, and the solution is</p>
<p class="center large">y = e<sup>vx</sup> ( Ccos(wx) + iDsin(wx) )</p>
<p>&nbsp;</p>
<div class="questions">9479, 9480, 9481, 9482, 9483, 9484, 9485, 9486, 9487, 9488</div>
<p>&nbsp;</p>
<div class="related">
<a href="differential-equations-solution-guide.html">Differential Equations Solution Guide</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/differential-equations-second-order.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:29 GMT -->
</html>