new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
310 lines
13 KiB
HTML
310 lines
13 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:55 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Introduction to Derivatives</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
|
||
<style>
|
||
.lim {
|
||
display: inline-table;
|
||
text-align: center;
|
||
vertical-align: middle;
|
||
margin: 0 4px 0 2px;
|
||
border-collapse: collapse;
|
||
}
|
||
.lim em {
|
||
display: table-row;
|
||
text-align: center;
|
||
font-style: inherit;
|
||
}
|
||
.lim strong {
|
||
display: table-row;
|
||
text-align: center;
|
||
font-weight: inherit;
|
||
font-size: 80%;
|
||
line-height: 9px;
|
||
}
|
||
</style>
|
||
|
||
|
||
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js"></script>
|
||
<script>document.write(gTagHTML())</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Introduction to Derivatives</h1>
|
||
|
||
<p class="center">It is all about slope!</p>
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td class="large">
|
||
<p class="center large">Slope = <span class="intbl"><em>Change in Y</em><strong>Change in X</strong></span></p></td>
|
||
<td style="width:30px;"> </td>
|
||
<td><img src="../algebra/images/slope.svg" alt="gradient"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p> </p>
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p>We can find an <b>average</b> slope between two points.</p>
|
||
<p> </p></td>
|
||
<td> </td>
|
||
<td><img src="images/slope-average.svg" alt="average slope = 24/15"></td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>But how do we find the slope <b>at a point</b>?</p>
|
||
<p>There is nothing to measure!</p></td>
|
||
<td> </td>
|
||
<td><img src="images/slope-0-0.svg" alt="slope 0/0 = ????"></td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>But with derivatives we use a small difference ...</p>
|
||
<p class="center">... then have it <b>shrink towards zero</b>.</p></td>
|
||
<td> </td>
|
||
<td><img src="images/slope-dy-dx.svg" alt="slope delta y / delta x"></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<h2>Let us Find a Derivative!</h2>
|
||
<p>To find the derivative of a function <span class="large">y = f(x)</span> we use the slope formula:</p>
|
||
<p class="center large">Slope = <span class="intbl">
|
||
<em>Change in Y</em>
|
||
<strong>Change in X</strong>
|
||
</span> = <span class="intbl"><em>Δy</em><strong>Δx</strong></span></p>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-dy-dx2.svg" alt="slope delta x and delta y"></p>
|
||
<p>And (from the diagram) we see that:</p>
|
||
<table align="center" cellpadding="3" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td><span class="center">x changes from</span></td>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="center"><span class="large">x</span></span></td>
|
||
<td style="text-align:center;">to</td>
|
||
<td style="text-align:center;"><span class="center"><span class="large">x+Δx</span></span></td>
|
||
</tr>
|
||
<tr>
|
||
<td><span class="center">y changes from</span></td>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="center"><span class="large">f(x)</span></span></td>
|
||
<td style="text-align:center;">to</td>
|
||
<td style="text-align:center;"><span class="center"><span class="large">f(x+Δx)</span></span></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>Now follow these steps:</p>
|
||
<ul>
|
||
<li>Fill in this slope formula: <span class="intbl large">
|
||
<em>Δy</em><strong>Δx</strong></span> = <span class="intbl large"><em>f(x+Δx) − f(x)</em><strong>Δx</strong></span></li>
|
||
<li>Simplify it as best we can</li>
|
||
<li>Then make <span class="large"><b>Δx</b></span> shrink towards zero.</li>
|
||
</ul>
|
||
<div style="clear:both"></div>
|
||
<p>Like this:</p>
|
||
<div class="example">
|
||
<h3>Example: the function <b>f(x) = x<sup>2</sup></b></h3>
|
||
<p>We know <b>f(x) = x<sup>2</sup></b>, and we can calculate <b>f(x<span class="large">+Δx</span>)</b> :</p>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td style="text-align:right;">Start with:</td>
|
||
<td> </td>
|
||
<td><b>f(x<span class="large">+Δx</span>) = (x<span class="large">+Δx</span>)<sup>2</sup></b></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"><a href="../algebra/expanding.html">Expand</a> (x + Δx)<sup>2</sup>: </td>
|
||
<td> </td>
|
||
<td><b>f(x<span class="large">+Δx</span>) = x<sup>2</sup> + 2x Δx + (Δx)<sup>2</sup></b></td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
<p> </p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">The slope formula is:</span><span class="right"><span class="intbl">
|
||
<em>f(x+Δx) − f(x)</em>
|
||
<strong>Δx</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Put in <b>f(x+Δx)</b> and <b>f(x)</b>:</span><span class="right"><span class="intbl">
|
||
<em>x<sup>2</sup> + 2x Δx + (Δx)<sup>2</sup> − x<sup>2</sup></em>
|
||
<strong>Δx</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Simplify (x<sup>2</sup> and −x<sup>2</sup> cancel):</span><span class="right"><span class="intbl">
|
||
<em>2x Δx + (Δx)<sup>2</sup></em>
|
||
<strong>Δx</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Simplify more (divide through by <span class="large">Δx)</span>:</span><span class="right">= 2x + Δx</span></div>
|
||
<div class="row"><span class="left">Then, <b>as <span class="large">Δx</span> heads towards 0</b> we get:</span><span class="right">= 2x</span></div>
|
||
</div>
|
||
<p> </p>
|
||
<p class="larger">Result: the derivative of <b> x<sup>2</sup></b> is <b>2x</b></p>
|
||
<p>In other words, the slope at x is <b>2x</b></p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="def">
|
||
|
||
|
||
<p>We write <b>dx</b> instead of <b>"Δx heads towards 0"</b>.</p>
|
||
<p>And "the derivative of" is commonly written <span class="intbl large"><em>d</em><strong>dx</strong></span> like this:</p>
|
||
|
||
|
||
<p class="center"><span class="larger"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>2</sup> = 2x</span><br>
|
||
<i>"The derivative of <b>x<sup>2</sup></b> equals <b>2x</b>"</i><br>
|
||
or simply<i> "d dx of <b>x<sup>2</sup></b> equals <b>2x</b>"</i></p>
|
||
</div>
|
||
<br>
|
||
|
||
<h3>So what does <b><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>2</sup> = 2x</b> mean?</h3>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-x2-2.svg" alt="slope x^2 at 2 is 4"></p>
|
||
<p>It means that, for the function x<sup>2</sup>, the slope or "rate of change" at any point is <span class="center"> <b>2x</b>.</span></p>
|
||
<p>So when <b>x=2</b> the slope is <b>2x = 4</b>, as shown here:</p>
|
||
<p>Or when <b>x=5</b> the slope is <b>2x = 10</b>, and so on.</p>
|
||
<div class="def">
|
||
<p>Note: <span class="large">f’(x)</span> can also be used for "the derivative of":</p>
|
||
<p class="center"><span class="larger">f’(x) = 2x</span><br>
|
||
<i>"The derivative of f(x) equals 2x"</i><br>
|
||
or simply <i>"f-dash of x equals 2x"</i></p>
|
||
</div>
|
||
<p> </p>
|
||
<p>Let's try another example.</p>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> ?</h3>
|
||
<p>We know <b>f(x) = x<sup>3</sup></b>, and can calculate <b>f(x+Δx)</b> :</p>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td style="text-align:right;">Start with:</td>
|
||
<td> </td>
|
||
<td><b>f(x+Δx) = (x+Δx)<sup>3</sup></b></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"><a href="../algebra/expanding.html">Expand</a> (x + Δx)<sup>3</sup>: </td>
|
||
<td> </td>
|
||
<td nowrap="nowrap"><b>f(x+Δx) = x<sup>3</sup> + 3x<sup>2</sup> Δx + 3x (Δx)<sup>2</sup> + (Δx)<sup>3</sup></b></td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
<p> </p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">The slope formula:</span><span class="right"><span class="intbl">
|
||
<em>f(x+Δx) − f(x)</em>
|
||
<strong>Δx</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Put in <b>f(x+Δx)</b> and <b>f(x)</b>:</span><span class="right"><span class="intbl">
|
||
<em>x<sup>3</sup> + 3x<sup>2</sup> Δx + 3x (Δx)<sup>2</sup> + (Δx)<sup>3</sup> − x<sup>3</sup></em>
|
||
<strong>Δx</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Simplify (x<sup>3</sup> and −x<sup>3</sup> cancel):</span><span class="right"><span class="intbl">
|
||
<em>3x<sup>2</sup> Δx + 3x (Δx)<sup>2</sup> + (Δx)<sup>3</sup></em>
|
||
<strong>Δx</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Simplify more (divide through by <span class="large">Δx)</span>:</span><span class="right"> 3x<sup>2</sup> + 3x Δx + (Δx)<sup>2</sup></span></div>
|
||
<div class="row"><span class="left">Then, <b>as <span class="large">Δx</span> heads towards 0</b> we get:</span><span class="right">3x<sup>2</sup></span></div>
|
||
</div>
|
||
|
||
<p class="larger">Result: the derivative of <b> x<sup>3</sup></b> is <b>3x<sup>2</sup></b></p>
|
||
|
||
</div>
|
||
<p>Have a play with it using the <a href="derivative-plotter.html">Derivative Plotter</a>.</p>
|
||
<p> </p>
|
||
<h2>Derivatives of Other Functions</h2>
|
||
<p>We can use the same method to work out derivatives of other functions (like sine, cosine, logarithms, etc).</p>
|
||
<div class="center80">
|
||
<p class="center">But <b>in practice</b> the usual way to find derivatives is to use:</p>
|
||
<p class="center large"><a href="derivatives-rules.html">Derivative Rules</a></p>
|
||
</div><p> </p>
|
||
<div class="example">
|
||
<h3>Example: what is the derivative of sin(x) ?</h3>
|
||
<p>On <a href="derivatives-rules.html">Derivative Rules</a> it is listed as being <span class="large">cos(x)</span></p>
|
||
<p>Done.</p>
|
||
</div>
|
||
<p>But using the rules can be tricky!</p>
|
||
<div class="example">
|
||
<h3>Example: what is the derivative of cos(x)sin(x) ?</h3>
|
||
<p>We get a <b>wrong </b>answer if we try to multiply the derivative of cos(x) by the derivative of sin(x) ... !</p>
|
||
<p>Instead we use the "Product Rule" as explained on the <a href="derivatives-rules.html">Derivative Rules</a> page.</p>
|
||
<p>And it actually works out to be <span class="large">cos<sup>2</sup>(x) − sin<sup>2</sup>(x)</span></p>
|
||
</div>
|
||
<p>So that is your next step: learn how to use the rules.</p>
|
||
<p> </p>
|
||
|
||
<h2>Notation</h2>
|
||
<p>"Shrink towards zero" is actually written as a <a href="limits.html">limit</a> like this:</p>
|
||
<div class="center larger">f’(x) = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>f(x+Δx) − f(x)</em><strong>Δx</strong></span></div>
|
||
<!-- f'(x) = LIM[DELx->0] f(x+DELx)-f(x)/DELx -->
|
||
<p class="center">
|
||
"The derivative of <b>f</b> equals <br><b>the limit as <span class="large">Δ</span>x goes to zero</b> of <span class="large">f(x+Δx) - f(x) over </span><span class="large">Δx</span>"</p>
|
||
<p> </p>
|
||
<p>Or sometimes the derivative is written like this<span class="center"> (explained on <a href="derivatives-dy-dx.html">Derivatives as dy/dx</a></span>):</p>
|
||
<div class="center larger"><span class="intbl"><em>dy</em><strong>dx</strong></span> = <span class="intbl"><em>f(x+dx) − f(x)</em><strong>dx</strong></span></div>
|
||
<!-- dy/dx = f(x+dx)-f(x)/dx -->
|
||
<p> </p>
|
||
<p>The process of finding a derivative is called "differentiation".</p>
|
||
<div class="words">
|
||
<p>You <b>do</b> differentiation ... to <b>get</b> a derivative.</p>
|
||
</div>
|
||
<h2>Where to Next?</h2>
|
||
<p>Go and learn how to find derivatives using <a href="derivatives-rules.html">Derivative Rules</a>, and get plenty of practice:</p>
|
||
<div class="questions">
|
||
<script>getQ(6790, 6791, 6792, 6793, 6794, 6795, 6796, 6797, 6798, 6799);</script>
|
||
</div>
|
||
|
||
<div class="related">
|
||
<a href="derivatives-rules.html">Derivative Rules</a>
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-introduction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:56 GMT -->
|
||
</html> |