Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

690 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-inverse.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:45 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Inverse of a Matrix</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style>
.mat {
font: 20px Verdana, Arial, Trebuchet MS, Tahoma, Geneva, Verdana, sans-serif;
color: #f30;
background-image: linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c);
background-repeat: no-repeat;
background-size: 7px 2px;
background-position: top left, top right, bottom left, bottom right;
border: solid #07c;
border-width: 0 2px;
display: inline-block;
vertical-align: middle;
padding: 2px 9px 3px 9px;
border-radius:3px;
}
.cols1, .cols2, .cols3, .cols4 {
display: inline-grid;
grid-template-columns: max-content;
align-content: space-evenly;
grid-gap: 4px 14px;
text-align: center;
vertical-align: middle;
}
.cols1 { grid-template-columns: max-content; }
.cols2 { grid-template-columns: repeat(2, max-content); }
.cols3 { grid-template-columns: repeat(3, max-content); }
.cols4 { grid-template-columns: repeat(4, max-content); }
.txt {
display: inline-block;
vertical-align: middle;
padding: 3px 3px;
font: 1.5rem Verdana, Geneva, sans-serif;
color: orange;
text-align: center;
min-width: 25px;
}
.txt .intbl {font-size: 90%; }
.inv { color:#07c; display:inline-block; transform: translateX(-0.1em) translateY(-1.1em); font-size: 90%; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu">&nbsp;</div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Inverse of a Matrix</h1>
<p class="center">Please read our <a href="matrix-introduction.html">Introduction to Matrices</a> first.</p>
<h2>What is the Inverse of a Matrix?</h2>
<p>Just like a <b>number </b>has a <a href="../reciprocal.html">reciprocal</a> ...
</p>
<p class="center"><img src="../numbers/images/reciprocal-reciprocal.svg" alt="Reciprocal of 8 is 1/8 and back again"><br>
Reciprocal of a Number (note: <span class="large"><span class="intbl"><em>1</em><strong>8</strong></span></span> can also be written <span class="large">8<sup>-1</sup></span>)</p>... a <b>matrix </b>has an <b>inverse :</b><span class="larger"></span>
<p class="center"><img src="images/matrix-inverse-both.svg" alt="Reciprocal of A is A-inverse and back again"><br>Inverse of a Matrix</p>We write <span class="larger">A<sup>-1</sup></span> instead of&nbsp; <span class="larger"><span class="intbl"><em>1</em><strong>A</strong></span></span>&nbsp; because we don't divide by a matrix!
<p>And there are other similarities:</p>
<div class="dotpoint">
<p>When we <b>multiply a number</b> by its <b>reciprocal</b> we get <b>1</b>:</p>
<div class="center larger">8 × <span class="intbl"><em>1</em><strong>8</strong></span> = <b>1</b></div>
<!-- 8 * 1/8 = 1 -->
<p>When we <b>multiply a matrix</b> by its <b>inverse</b> we get the<b> Identity Matrix</b> (which is like "1" for matrices):</p>
<div class="center larger">A × A<sup>-1</sup> = <b>I</b></div>
</div>
<div class="dotpoint">
<p>Same thing when the inverse comes first:</p>
<div class="center larger"><span class="intbl"><em>1</em><strong>8</strong></span> × 8 = <b>1</b></div>
<!-- 1/8 * 8 = 1 -->
<div class="center larger">A<sup>-1</sup> × A = <b>I</b></div>
</div>
<h2>Identity Matrix</h2>
<p>We just mentioned the "Identity Matrix". It is the matrix equivalent of the number "1":</p>
<div style="text-align: center;">
<div class="txt">I =</div>
<div class="mat">
<div class="cols3">
<span>1</span><span>0</span><span>0</span>
<span>0</span><span>1</span><span>0</span>
<span>0</span><span>0</span><span>1</span>
</div>
</div>
<!-- I = [1,0,0~0,1,0~0,0,1] -->
<p class="large center">A 3x3 Identity Matrix</p></div>
<ul>
<li>It is "square" (has same number of rows as columns),</li>
<li>It has <b>1</b>s on the diagonal and <b>0</b>s everywhere else.</li>
<li>Its symbol is the capital letter <b>I</b>.</li>
</ul>
<p>The Identity Matrix can be 2×2 in size, or 3×3, 4×4, etc ...</p>
<h2>Definition</h2>
<p>Here is the definition:</p>
<div class="def">
<p>The inverse of <span class="larger">A</span> is <span class="larger">A<sup>-1</sup></span> only when:</p>
<p class="center"><span class="larger">AA<sup>-1</sup> = A<sup>-1</sup>A = <b>I</b></span></p>
<p>Sometimes there is no inverse at all.</p>
</div><p>(Note: writing AA<sup>-1 </sup>means A times A<sup>-1</sup>)</p>
<h2>2x2 Matrix</h2>
<p>OK, how do we calculate the inverse?</p>
<p>Well, for a 2x2 matrix the inverse is:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>a</span><span>b</span>
<span>c</span><span>d</span>
</div>
</div>
<div class="txt"><span class="inv">1</span> = <span class="intbl"><em>1</em><strong>adbc</strong></span></div>
<div class="mat">
<div class="cols2">
<span>d</span><span>b</span>
<span>c</span><span>a</span>
</div>
</div>
</div>
<!-- [a,b~c,d] -1 = 1/ad-bc [d,-b~-c,a] -->
<p>In other words: <b>swap</b> the positions of a and d, put <b>negatives</b> in front of b and c, and <b>divide</b> everything by <b>adbc</b> .</p>
<p class="center">Note: <b>adbc</b> is called the <a href="matrix-determinant.html">determinant</a>.</p>
<p>Let us try an example:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>4</span><span>7</span> <span>2</span><span>6</span>
</div></div>
<div class="txt"><span class="inv">1</span> = <span class="intbl"><em>1</em><strong>4×67×2</strong></span></div>
<div class="mat">
<div class="cols2">
<span>6</span><span>7</span>
<span>2</span><span>4</span>
</div></div>
</div>
<br>
<div style="text-align: center;">
<div class="txt">= <span class="intbl"><em>1</em><strong>10</strong></span></div>
<div class="mat">
<div class="cols2">
<span>6</span><span>7</span>
<span>2</span><span>4</span>
</div>
</div>
</div>
<!-- = 1/10 [6,-7~-2,4] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>0.6</span><span>0.7</span>
<span>0.2</span><span>0.4</span>
</div>
</div>
</div>
<!-- = [0.6,-0.7~-0.2,0.4] -->
<p>How do we know this is the right answer?</p>
<p class="center80" align="center">Remember it must be true that: <span class="larger">AA<sup>-1</sup> = <b>I</b></span></p>
<p>So, let us check to see what happens when we <a href="matrix-multiplying.html">multiply the matrix</a> by its inverse:</p>
<p><br></p>
<div style="text-align: center;">
<div class="txt"></div>
<div class="mat">
<div class="cols2">
<span>4</span><span>7</span>
<span>2</span><span>6</span>
</div>
</div>
<div class="mat">
<div class="cols2">
<span>0.6</span><span>0.7</span>
<span>0.2</span><span>0.4</span>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>4×0.6+7×0.2</span><span>4×0.7+7×0.4</span>
<span>2×0.6+6×0.2</span><span>2×0.7+6×0.4</span>
</div>
</div>
</div>
<!-- [4,7~2,6][0.6,-0.7~-0.2,0.4] = [4*0.6+7*-0.2, 4*-0.7+7*0.4 ~ 2*0.6+6*-0.2, 2*-0.7+6*0.4] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>2.41.4</span><span>2.8+2.8</span>
<span>1.21.2</span><span>1.4+2.4</span>
</div>
</div>
</div>
<!-- = [2.4-1.4, -2.8+2.8 ~ 1.2-1.2, -1.4+2.4] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>1</span><span>0</span>
<span>0</span><span>1</span>
</div>
</div>
</div>
<!-- = [1,0~0,1] -->
<p class="center">And, hey!, we end up with the Identity Matrix! <br>So it must be right.</p>
<p class="center"><br></p>
<p class="center80" align="center">It should <b>also</b> be true that: <span class="larger">A<sup>-1</sup>A = <b>I</b></span></p>
<p>Why don't you have a go at multiplying these? See if you also get the Identity Matrix:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>0.6</span><span>0.7</span>
<span>0.2</span><span>0.4</span>
</div>
</div>
<div class="mat">
<div class="cols2">
<span>4</span><span>7</span>
<span>2</span><span>6</span>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols2" style="width:220px;">
<span>&nbsp;</span><span>&nbsp;</span>
<span>&nbsp;</span><span>&nbsp;</span>
</div>
</div>
</div>
<!-- [0.6,-0.7~-0.2,0.4][4,7~2,6] = [,~,] -->
<h2>Why Do We Need an Inverse?</h2>
<p>Because with matrices we <b>don't divide</b>! Seriously, there is no concept of dividing by a matrix.</p>
<p>But we can <b>multiply by an inverse</b>, which achieves the same thing.</p>
<div class="example">
<h3>Imagine we can't divide by numbers ...</h3>
<p>... and someone asks "How do I share 10 apples with 2 people?"</p>
<p>But we can take the <b>reciprocal</b> of 2 (which is 0.5), so we answer:</p>
<p class="center"><b>10 × 0.5 = 5</b></p>
<p class="center">They get 5 apples each.</p>
</div>
<p>The same thing can be done with matrices:</p>
<div class="example">
<p>Say we want to find matrix X, and we know matrix A and B:</p>
<p class="center larger">XA = B</p>
<p>It would be nice to divide both sides by A (to get X=B/A), but remember <b>we can't divide</b>.</p>
<p>&nbsp;</p>
<p>But what if we multiply both sides by A<sup>-1</sup> ?</p>
<p class="center larger">XAA<sup>-1</sup> = BA<sup>-1</sup></p>
<p>And we know that AA<sup>-1</sup> = I, so:</p>
<p class="center larger">XI = BA<sup>-1</sup></p>
<p>We can remove I (for the same reason we can remove "1" from 1x = ab for numbers):</p>
<p class="center larger">X = BA<sup>-1</sup></p>
<p>And we have our answer (assuming we can calculate A<sup>-1</sup>)</p></div>
<p>In that example we were very careful to get the multiplications correct, because with matrices the order of multiplication matters. AB is almost never equal to BA.</p>
<h2>A Real Life Example: Bus and Train</h2>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/train.jpg" height="154" width="240"></p>
<p>A group took a trip on a <b>bus</b>, at $3 per child and $3.20 per adult for a total of $118.40.</p>
<p>They took the <b>train</b> back at $3.50 per child and $3.60 per adult for a total of $135.20.</p>
<p>How many children, and how many adults?</p>
<div style="clear:both"></div>
<p>First, let us set up the matrices (be careful to get the rows and columns correct!):</p>
<p class="center"><img src="images/matrix-inverse-2x2-exr1.svg" alt="matrix inverse 2x2 bus"></p>
<p>This is just like the example above:</p>
<p class="center"><span class="larger">XA = B</span></p>
<p>So to solve it we need the inverse of "A":</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>3</span><span>3.5</span>
<span>3.2</span><span>3.6</span>
</div>
</div>
<div class="txt"><span class="inv">1</span> = <span class="intbl"><em>1</em><strong>3×3.63.5×3.2</strong></span></div>
<div class="mat">
<div class="cols2">
<span>3.6</span><span>3.5</span>
<span>3.2</span><span>3</span>
</div>
</div>
</div>
<!-- [3,3.5~3.2,3.6] -1 = 1/3*3.6-3.5*3.2 [3.6,-3.5~-3.2,3] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>9</span><span>8.75</span>
<span>8</span><span>7.5</span>
</div>
</div>
</div>
<!-- = [-9,8.75~8,-7.5] -->
<p>&nbsp;</p>
<p>Now we have the inverse we can solve using:</p>
<p class="center"><span class="larger">X = BA<sup>-1</sup></span></p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>x<sub>1</sub></span><span>x<sub>2</sub></span>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<span>118.4 135.2</span>
</div>
</div>
<div class="mat">
<div class="cols2">
<span>9</span><span>8.75</span>
<span>8</span><span>7.5</span>
</div>
</div>
</div>
<!-- [x_1,x_2] = [118.4 135.2][-9,8.75~8,-7.5] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>118.4×9 + 135.2×8</span><span>118.4×8.75 + 135.2×7.5</span>
</div>
</div>
</div>
<!-- = [118.4*-9 +135.2*8,118.4*8.75 +135.2*-7.5] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>16</span><span>22</span>
</div>
</div>
</div>
<!-- = [16,22] -->
<p>There were 16 children and 22 adults!</p>
<p>The answer almost appears like magic. But it is based on good mathematics.</p>
<div class="center80">
<p>Calculations like that (but using much larger matrices) help Engineers design buildings, are used in video games and computer animations to make things look 3-dimensional, and many other places.</p>
<p>It is also a way to solve <a href="systems-linear-equations.html">Systems of Linear Equations</a>.</p>
<p>The calculations are done by computer, but the people must understand the formulas.</p>
</div>
<p>&nbsp;</p>
<h2>Order is Important</h2>
<div class="example">
<p>Say that we are trying to find "X" in this case:</p>
<p class="center larger">AX = B</p>
<p><b>This is different to the example above!</b> X is now <b>after</b> A.</p>
<p>With matrices the order of multiplication usually changes the answer. Do not assume that AB = BA, it is almost never true.</p>
<p>&nbsp;</p>
<p>So how do we solve this one? Using the same method, but put A<sup>-1</sup> in front:</p>
<p class="center larger">A<sup>-1</sup>AX = A<sup>-1</sup>B</p>
<p>And we know that A<sup>-1</sup>A= I, so:</p>
<p class="center larger">IX = A<sup>-1</sup>B</p>
<p>We can remove I:</p>
<p class="center larger">X = A<sup>-1</sup>B</p>
<p>And we have our answer (assuming we can calculate A<sup>-1</sup>)</p>
</div>
<p><b>Why don't we try our bus and train example, but with the data set up that way around.</b></p>
<p>It can be done that way, but we must be careful how we set it up.</p>
<p>This is what it looks like as <span class="larger">AX = B</span>:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>3</span><span>3.2</span>
<span>3.5</span><span>3.6</span>
</div>
</div>
<div class="mat">
<div class="cols1">
<span>x<sub>1</sub></span>
<span>x<sub>2</sub></span>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<span>118.4</span>
<span>135.2</span>
</div>
</div>
</div>
<!-- [3,3.2~3.5,3.6][x_1~x_2] = [118.4~135.2] -->
<p>It looks so neat! I think I prefer it like this.</p>
<p class="center"><i>Also note how the rows and columns are swapped over<br>
("Transposed")
compared to the previous example.</i></p>
<p>To solve it we need the inverse of "A":</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>3</span><span>3.2</span>
<span>3.5</span><span>3.6</span>
</div>
</div>
<div class="txt"><span class="inv">1</span> = <span class="intbl"><em>1</em><strong>3×3.63.2×3.5</strong></span></div>
<div class="mat">
<div class="cols2">
<span>3.6</span><span>3.2</span>
<span>3.5</span><span>3</span>
</div>
</div>
<div class="txt"></div>
</div>
<!-- [3,3.2~3.5,3.6] -1 = 1/3*3.6-3.2*3.5 [3.6,-3.2~-3.5,3] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>9</span><span>8</span>
<span>8.75</span><span>7.5</span>
</div>
</div>
<div class="txt"></div>
</div>
<!-- = [-9,8~8.75,-7.5] -->
<p class="center">
It is like the inverse we got before, but<br>
Transposed (rows and columns swapped over).</p>
<p>Now we can solve using:</p>
<p class="center"><span class="larger">X = A<sup>-1</sup>B</span></p>
<div style="text-align: center;">
<div class="mat">
<div class="cols1">
<span>x<sub>1</sub></span>
<span>x<sub>2</sub></span>
</div>
</div>
<div class="txt">=</div>
<div class="mat">
<div class="cols2">
<span>9</span><span>8</span>
<span>8.75</span><span>7.5</span>
</div>
</div>
<div class="mat">
<div class="cols1">
<span>118.4</span>
<span>135.2</span>
</div>
</div>
</div>
<!-- [x_1~x_2] = [-9,8~8.75,-7.5][118.4~135.2] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<span>9×118.4 + 8×135.2</span>
<span>8.75×118.4 7.5×135.2</span>
</div>
</div>
</div>
<!-- = [-9*118.4 + 8*135.2~8.75*118.4 - 7.5*135.2] -->
<br>
<div style="text-align: center;">
<div class="txt">=</div>
<div class="mat">
<div class="cols1">
<span>16</span>
<span>22</span>
</div>
</div>
</div>
<!-- = [16~22] -->
<p>Same answer: 16 children and 22 adults.</p>
<p>So matrices are powerful things, but they do need to be set up correctly!</p>
<p>&nbsp;</p>
<h2>The Inverse May Not Exist</h2>
<p>First of all, to have an inverse the matrix must be "square" (same number of rows and columns).</p>
<p>But also the <b>determinant cannot be zero</b> (or we end up dividing by zero). How about this:</p>
<div style="text-align: center;">
<div class="mat">
<div class="cols2">
<span>3</span><span>4</span>
<span>6</span><span>8</span>
</div>
</div>
<div class="txt"><span class="inv">1</span> = <span class="intbl"><em>1</em><strong>3×84×6</strong></span></div>
<div class="mat">
<div class="cols2">
<span>8</span><span>4</span>
<span>6</span><span>3</span>
</div>
</div>
</div>
<!-- [3,4~6,8] -1 = 1/3*8-4*6 [8,-4~-6,3] -->
<br>
<div style="text-align: center;">
<div class="txt">= <span class="intbl"><em>1</em><strong>2424</strong></span></div>
<div class="mat">
<div class="cols2">
<span>8</span><span>4</span>
<span>6</span><span>3</span>
</div>
</div>
</div>
<!-- = 1/24-24 [8,-4~-6,3] -->
<p class="center"><b>2424?</b> That equals 0, and <b>1/0 is undefined</b>.<br>
We cannot go any further!
This matrix has no Inverse.</p>
<p class="center larger">Such a matrix is called "Singular",<br>which only happens when the determinant is zero.</p>
<p>And it makes sense ... look at the numbers: the second row is just double the first row, and does <b>not add any new information</b>.</p>
<p>And the determinant <b>2424</b> lets us know this fact.</p>
<p>(Imagine in our bus and train example that the prices on the train were all exactly 50% higher than the bus: so now we can't figure out any differences between adults and children. There needs to be something to set them apart.)</p>
<h2>Bigger Matrices</h2>
<p>The inverse of a 2x2 is <b>easy</b> ... compared to larger matrices (such as a 3x3, 4x4, etc).</p>
<p>For those larger matrices there are three main methods to work out the inverse:</p>
<ul>
<li><a href="matrix-inverse-row-operations-gauss-jordan.html">Inverse of a Matrix using Elementary Row Operations (Gauss-Jordan)</a></li>
<li><a href="matrix-inverse-minors-cofactors-adjugate.html">Inverse of a Matrix using Minors, Cofactors and Adjugate</a></li>
<li>Use a computer (such as the <a href="matrix-calculator.html">Matrix Calculator</a>)</li>
</ul>
<p>&nbsp;</p>
<h2>Conclusion</h2>
<ul>
<div class="bigul">
<li>The inverse of <span class="larger">A</span> is <span class="larger">A<sup>-1</sup></span> only when <span class="larger">AA<sup>-1</sup> = A<sup>-1</sup>A = <b>I</b></span></li>
<li>To find the inverse of a 2x2 matrix: <b>swap</b> the positions of a and d, put <b>negatives</b> in front of b and c, and <b>divide</b> everything by the determinant (ad-bc).</li>
<li>Sometimes there is no inverse at all</li>
</div>
</ul>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(106, 2606, 2607, 2608, 2609, 2610, 2611, 2612);</script>&nbsp;
</div>
<div class="related">
<a href="matrix-multiplying.html">Multiplying Matrices</a>
<a href="matrix-determinant.html">Determinant of a Matrix</a>
<a href="matrix-calculator.html">Matrix Calculator</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-inverse.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:45 GMT -->
</html>