lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

269 lines
10 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:46 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Inverse of a Matrix using Minors, Cofactors and Adjugate</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style type="text/css">
.style1 {color: #9933FF}
.style2 {color: #990000}
.mat {
font: 20px Verdana, Arial, Trebuchet MS, Tahoma, Geneva, Verdana, sans-serif;
color: #f30;
background-image: linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c);
background-repeat: no-repeat;
background-size: 7px 2px;
background-position: top left, top right, bottom left, bottom right;
border: solid #07c;
border-width: 0 2px;
display: inline-block;
vertical-align: middle;
padding: 2px 9px 3px 9px;
border-radius:3px;
}
.cols1, .cols2, .cols3, .cols4 {
display: inline-grid;
grid-template-columns: max-content;
align-content: space-evenly;
grid-gap: 4px 14px;
text-align: center;
vertical-align: middle;
}
.cols1 { grid-template-columns: max-content; }
.cols2 { grid-template-columns: repeat(2, max-content); }
.cols3 { grid-template-columns: repeat(3, max-content); }
.cols4 { grid-template-columns: repeat(4, max-content); }
.txt {
display: inline-block;
vertical-align: middle;
padding: 3px 3px;
font: 1.5rem Verdana, Geneva, sans-serif;
color: orange;
text-align: center;
min-width: 25px;
}
.txt .intbl {font-size: 90%; }
.inv { color:#07c; display:inline-block; transform: translateX(-0.1em) translateY(-1.1em); font-size: 90%; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Inverse of a Matrix<br>
using Minors, Cofactors and Adjugate</h1>
<p class="center"><i>Note: also check out <a href="matrix-inverse-row-operations-gauss-jordan.html">Matrix Inverse by Row Operations</a> and the <a href="matrix-calculator.html">Matrix Calculator</a></i></p>
<p>&nbsp;</p>
<p class="larger">We can calculate the <a href="matrix-inverse.html">Inverse of a Matrix</a> by:</p>
<ul>
<li>Step 1: calculating the Matrix of Minors,</li>
<li>Step 2: then turn that into the Matrix of Cofactors,</li>
<li>Step 3: then the Adjugate, and</li>
<li>Step 4: multiply that by 1/Determinant.</li>
</ul>
<p class="larger">But it is best explained by working through an example!</p>
<h2>Example: find the Inverse of A:</h2>
<div style="text-align: center;">
<div class="txt">A =</div>
<div class="mat">
<div class="cols3">
<span>3</span><span>0</span><span>2</span>
<span>2</span><span>0</span><span>-2</span>
<span>0</span><span>1</span><span>1</span>
</div>
</div>
</div>
<p>It needs 4 steps. It is all simple arithmetic but there is a lot of it, so try not to make a mistake!</p>
<h2>Step 1: Matrix of Minors</h2>
<p>The first step is to create a "Matrix of Minors". This step has the most calculations.</p>
<p>For each element of the matrix:</p>
<ul>
<li>ignore the values on the current row and column</li>
<li><a href="matrix-determinant.html">calculate the determinant</a> of the remaining values</li>
</ul>
<p>Put those determinants into a matrix (the "Matrix of Minors")</p>
<div class="center80">
<h3>Determinant</h3>
<p>For a 2×2 matrix (2 rows and 2 columns) the determinant is easy: <b>ad-bc</b></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<p class="indent50px">Think of a cross:</p>
<ul>
<li class="indent50px">Blue means positive (+ad),</li>
<li class="indent50px">Red means negative (-bc)</li>
</ul></td>
<td>&nbsp;</td>
<td class="indent50px"><img src="images/matrix-2x2-det-c.gif" alt="A Matrix" height="69" width="95"></td>
</tr>
</tbody></table>
<p>(It gets harder for a 3×3 matrix, etc)</p>
</div>
<h3>The Calculations</h3>
<p>Here are the first two, and last two, calculations of the "<b>Matrix of Minors</b>" (notice how I ignore the values in the current row and columns, and calculate the determinant using the remaining values):</p>
<p class="center"><img src="images/matrix-minors1.gif" alt="matrix of minors calculation steps" height="353" width="273"></p>
<p>And here is the calculation for the whole matrix:</p>
<p class="center"><img src="images/matrix-minors2.svg" alt="matrix minors result" height="91" width="559"></p>
<h2>Step 2: Matrix of Cofactors</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/matrix-checkerboard.svg" alt="checkerboard of plus and minus" height="120" width="120"></p>
<p>This is easy! Just apply a "checkerboard" of minuses to the "Matrix of Minors". In other words, we need to change the sign of alternate cells, like this:</p>
<p class="center"><img src="images/matrix-cofactors.svg" alt="matrix of cofactors" height="91" width="468"></p>
<h2>Step 3: Adjugate (also called Adjoint)</h2>
<p>Now "Transpose" all elements of the previous matrix... in other words swap their positions over the diagonal (the diagonal stays the same):</p>
<p class="center"><img src="images/matrix-adjugate.gif" alt="matrix adjugate" height="70" width="123"></p>
<h2>Step 4: Multiply by 1/Determinant</h2>
<p>Now <a href="matrix-determinant.html">find the determinant</a> of the original matrix. This isn't too hard, because we already calculated the determinants of the smaller parts when we did "Matrix of Minors".</p>
<p class="center"><span class="larger"><img src="images/matrix-3x3-det.svg" alt="A Matrix" height="104" width="406"></span></p>
<p>Using:</p>
<p class="center">Elements of top row: 3, 0, 2<br>
Minors for top row: 2, 2, 2</p>
<p>We end up with this calculation:</p>
<p class="center larger">Determinant = 3×2 0×2 + 2×2 = <b>10</b></p>
<div class="info">
<p><b>Note:</b> a small simplification is to multiply by the cofactors (which already have the "++" pattern), and then we just add each time:</p>
<p class="center larger">Determinant = 3×2 <b class="hilite">+</b> 0×(<b class="hilite"></b>2) + 2×2 = <b>10</b></p>
</div><p><br></p>
<p class="center80">Your Turn: try this for <b>any other row or column</b>, you should also get 10.</p>
<p><br></p>
<p>Now we multiply the Adjugate by 1/Determinant to get:</p>
<p class="center"><img src="images/matrix-adjugate-inverse.svg" alt="matrix adjugate by 1/det gives inverse" height="95" width="383"></p>
<p class="center large">And we are done!</p>
<p>Compare this answer with the one we got on <a href="matrix-inverse-row-operations-gauss-jordan.html">Inverse of a Matrix
using Elementary Row Operations</a>. Is it the same? Which method do you prefer?</p>
<h2>Larger Matrices</h2>
<p>It is exactly the same steps for larger matrices (such as a 4×4, 5×5, etc), but wow! there is a lot of calculation involved.</p>
<p>For a 4×4 Matrix we have to calculate 16 3×3 determinants. So it is often easier to use computers (such as the <a href="matrix-calculator.html">Matrix Calculator</a>.)</p>
<h2>Conclusion</h2>
<ul class="larger">
<li>For each element, calculate the <b>determinant of the values not on the row or column</b>, to make the Matrix of Minors</li>
<li>Apply a <b>checkerboard</b> of minuses to make the Matrix of Cofactors</li>
<li><b>Transpose</b> to make the Adjugate</li>
<li>Multiply by <b>1/Determinant</b> to make the Inverse</li>
</ul>
<p>&nbsp;</p>
<div class="questions">2617, 2618, 8500, 8501, 8502, 8503, 8504, 8505, 8506, 8507</div>
<div class="related">
<a href="matrix-multiplying.html">Multiplying Matrices</a>
<a href="matrix-determinant.html">Determinant of a Matrix</a>
<a href="matrix-calculator.html">Matrix Calculator</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:47 GMT -->
</html>