Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

373 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-determinant.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:42 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Determinant of a Matrix</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style>
.mat {
font: 20px Verdana, Arial, Trebuchet MS, Tahoma, Geneva, Verdana, sans-serif;
color: #f30;
background-image: linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c),
linear-gradient(#07c, #07c);
background-repeat: no-repeat;
background-size: 7px 2px;
background-position: top left, top right, bottom left, bottom right;
border: solid #07c;
border-width: 0 2px;
display: inline-block;
vertical-align: middle;
padding: 2px 9px 3px 9px;
border-radius:3px;
}
.cols1, .cols2, .cols3, .cols4 {
display: inline-grid;
grid-template-columns: max-content;
align-content: space-evenly;
grid-gap: 4px 14px;
text-align: center;
vertical-align: middle;
}
.cols1 { grid-template-columns: max-content; }
.cols2 { grid-template-columns: repeat(2, max-content); }
.cols3 { grid-template-columns: repeat(3, max-content); }
.cols4 { grid-template-columns: repeat(4, max-content); }
.txt {
display: inline-block;
vertical-align: middle;
padding: 3px 3px;
font: 1.5rem Verdana, Geneva, sans-serif;
color: orange;
text-align: center;
min-width: 25px;
}
.txt .intbl {font-size: 90%; }
.inv { color:#07c; display:inline-block; transform: translateX(-0.1em) translateY(-1.1em); font-size: 90%; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Determinant of a Matrix</h1>
<p>The determinant is a <b>special number</b> that can be calculated from a <a href="matrix-introduction.html">matrix</a>.</p>
<p>The matrix has to be square (same number of rows and columns) like this one:</p>
<div style="text-align: center; transform: scale(1.2);">
<div class="mat">
<div class="cols2">
<span>3</span><span>8</span>
<span>4</span><span>6</span>
</div>
</div>
</div>
<!-- [3,8~4,6] -->
<p class="center"><span class="large">A Matrix</span><br>
(This one has 2 Rows and 2 Columns)</p>
<p>Let us calculate the determinant of that matrix:</p>
<p class="center larger">3×6 8×4<br> = 18 32<br> = <b>14</b></p>
<p>Easy, hey? Here is another example:</p>
<div class="example">
<h3>Example:
<div style="text-align: center;">
<div class="txt">B =</div>
<div class="mat">
<div class="cols2">
<span>1</span><span>2</span>
<span>3</span><span>4</span>
</div>
</div>
</div>
<!-- A = [1,2~3,4] --></h3>
<p>The <b>symbol</b> for determinant is two vertical lines either side like this:</p>
<p class="center larger"><b>|B|</b> = 1×4 2×3<br>= 4 6<br> = <b>2</b></p>
<p>(Note: it is the same symbol as <a href="../numbers/absolute-value.html">absolute value</a>.)</p>
</div>
<h2>What is it for?</h2>
<p>The determinant helps us find the <a href="matrix-inverse-minors-cofactors-adjugate.html">inverse of a matrix</a>, tells us things about the matrix that are useful in <a href="systems-linear-equations.html">systems of linear equations</a>, <a href="../calculus/index.html">calculus</a> and more.</p>
<h2>Calculating the Determinant</h2>
<p>First of all the matrix must be <b>square</b> (i.e. have the same number of rows as columns). Then it is just arithmetic. </p>
<h2>For a 2×2 Matrix</h2>
<p>For a <span class="number large">2×2</span> matrix (2 rows and 2 columns):</p>
<div style="text-align: center;">
<div class="txt">A =</div>
<div class="mat">
<div class="cols2">
<span>a</span><span>b</span>
<span>c</span><span>d</span>
</div>
</div>
</div>
<!-- A = [a,b~c,d] -->
<p>The determinant is:</p>
<p class="center"><span class="larger">|A| = ad bc</span><span class="large"><br>
</span><i>"The determinant of A equals a times d minus b times c"</i></p>
<table style="border: 0;">
<tbody>
<tr>
<td>
<p>It is easy to remember when you think of a cross:</p>
<ul>
<li><span class="style1">Blue</span> is positive (+ad),</li>
<li><span class="style2">Red</span> is negative (bc)</li>
</ul></td>
<td>&nbsp;</td>
<td>
<img src="images/matrix-2x2-det.svg" alt="a by d, b by c">
</td>
</tr>
</tbody></table><br>
<div class="example">
<h3>Example: find the determinant of
<div style="text-align: center;">
<div class="txt">C =</div>
<div class="mat">
<div class="cols2">
<span>4</span><span>6</span>
<span>3</span><span>8</span>
</div>
</div>
</div>
<!-- B = [4,6~3,8] -->
</h3>
<p>
Answer:
</p>
<div class="tbl">
<div class="row"><span class="left"><span class="larger"><span class="large">|C|</span></span></span><span class="right"><span class="larger"><span class="large">= 4×8 6×3</span></span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="larger"><span class="large">= 32 18</span></span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="larger"><span class="large">= 14</span></span></span></div>
</div>
</div>
<h2>For a 3×3 Matrix</h2>
<p>For a <span class="number large">3×3</span> matrix (3 rows and 3 columns):</p>
<div style="text-align: center;">
<div class="txt">A =</div>
<div class="mat">
<div class="cols3">
<span>a</span><span>b</span><span>c</span>
<span>d</span><span>e</span><span>f</span>
<span>g</span><span>h</span><span>i</span>
</div>
</div>
</div>
<!-- A = [a,b,c~d,e,f~g,h,i] -->
<p>The determinant is:</p>
<p class="center"><span class="larger">|A| = a(ei fh) b(di fg) + c(dh eg)</span><span class="large"><br>
</span><i>"The determinant of A equals ... etc"</i></p>
<p>It may look complicated, but<b> there is a pattern</b>:</p>
<p class="center">
<img src="images/matrix-3x3-det.svg" alt="multiply pattern"> </p>
<p>To work out the determinant of a <b>3×3</b> matrix:</p>
<ul>
<li>Multiply <b>a</b> by the <b>determinant of the 2×2 matrix</b> that is<b> not in a</b>'s row or column.</li>
<li>Likewise for <b>b</b>, and for <b>c</b></li>
<li>Sum them up, but remember the minus in front of the <b>b</b></li>
</ul>
<p>As a formula <i>(remember the vertical bars</i> ||<i> mean "determinant of")</i>:</p>
<p class="center"><img style="background-color: hsl(240,100%,92%);" src="images/matrix-3x3-det-latex.gif" alt="A Matrix" height="56" width="329"><br>
<i>"The determinant of A equals a times the determinant of ... etc"</i></p>
<div class="example">
<h3>Example:
<div style="text-align: center;">
<div class="txt">D =</div>
<div class="mat">
<div class="cols3">
<span>6</span><span>1</span><span>1</span>
<span>4</span><span>2</span><span>5</span>
<span>2</span><span>8</span><span>7</span>
</div>
</div>
</div>
<!-- C = [6,1,1~4,-2,5~2,8,7] -->
</h3>
<div class="tbl">
<div class="row"><span class="left"><span class="large"><b>|D|</b></span></span><span class="right"><span class="large">= 6×(2×7 5×8) 1×(4×7 5×2) + 1×(4×8 (2×2))</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="large">= 6×(54) 1×(18) + 1×(36)</span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="large">= <b>306</b></span></span></div>
</div>
</div>
<h2>For 4×4 Matrices and Higher</h2>
<p>The pattern continues for <span class="number">4×4</span> matrices:</p>
<ul>
<li><b>plus</b> <b>a</b> times the determinant of the matrix that is<b> not</b> in <b>a</b>'s row or column,</li>
<li><b>minus b</b> times the determinant of the matrix that is<b> not</b> in <b>b</b>'s row or column,</li>
<li><b>plus c</b> times the determinant of the matrix that is<b> not</b> in <b>c</b>'s row or column,</li>
<li><b>minus d</b> times the determinant of the matrix that is<b> not</b> in <b>d</b>'s row or column,</li>
</ul>
<p class="center">
<img src="images/matrix-4x4-det.svg" alt="multiply pattern"> </p><p></p>
<p>As a formula:</p>
<p class="center"><img style="background-color: hsl(240,100%,92%);" src="images/matrix-4x4-det-latex.gif" alt="4x4 determinant formula" height="79" width="561"></p>
<p class="center">Notice the <b>++</b> pattern (<span class="hilite">+</span>a... <span class="hilite"></span>b... <span class="hilite">+</span>c... <span class="hilite"></span>d...). This is important to remember.</p>
<p>&nbsp;</p>
<p>The pattern continues for <span class="number">5×5</span> matrices and higher. Usually best to use a <a href="matrix-calculator.html">Matrix Calculator</a> for those!</p>
<p>&nbsp;</p>
<h2>Not The Only Way</h2>
<p>This method of calculation is called the "Laplace expansion" and I like it because the pattern is easy to remember. But there are other methods (just so you know).</p>
<h2>Summary</h2>
<ul>
<div class="bigul">
<li>For a <span class="number">2×2</span> matrix the determinant is<b> ad - bc</b></li>
<li>For a <span class="number">3×3</span> matrix multiply <b>a</b> by the <b>determinant of the 2×2 matrix</b> that is<b> not</b> in <b>a</b>'s row or column, likewise for <b>b</b> and <b>c</b>, but remember that <b>b</b> has a negative sign!</li>
<li>The pattern continues for larger matrices: multiply <b>a</b> by the <b>determinant of the matrix</b> that is<b> not</b> in <b>a</b>'s row or column, continue like this across the whole row, but remember the + + pattern.</li>
</div>
</ul>
<p>&nbsp;</p>
<div class="questions">718,2390,2391,2392,8477,719,2393,8478,8479,8480</div>
<div class="related">
<a href="matrix-introduction.html">Matrices</a>
<a href="matrix-calculator.html">Matrix Calculator</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/matrix-determinant.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:36:43 GMT -->
</html>