lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/mathematical-induction.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

253 lines
13 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en"><!-- #BeginTemplate "../Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/mathematical-induction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:11 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Mathematical Induction</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Mathematical Induction</h1>
<div class="center80">
<p>Mathematical Induction is a special way of proving things. It has only 2 steps:</p>
<ul>
<li>Step 1. Show it is true for the <b>first one</b></li>
<li>Step 2. Show that if <b>any one</b> is true then the <b>next one</b> is true</li>
</ul>
<p>Then <b>all</b> are true</p>
</div><p>&nbsp;</p>
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/domino-effect.jpg" alt="Domino Effect" width="250" height="158" /></p>
<p class="larger">Have you heard of the &quot;Domino Effect&quot;?</p>
<ul>
<li>Step 1. The <b>first</b> domino falls</li>
<li>Step 2. When <b>any</b> domino falls, the <b>next</b> domino falls</li>
</ul>
<p>So ... <b>all dominos will fall!</b></p>
<p class="larger">That is how Mathematical Induction works.</p>
<p>In the world of numbers we say:</p>
<ul>
<li>Step 1. Show it is true for first case, usually <b>n=1</b></li>
<li>Step 2. Show that if <b>n=k</b> is true then <b>n=k+1</b> is also true</li>
</ul>
<h2>How to Do it</h2>
<p>Step 1 is usually easy, we just have to prove it is true for <b>n=1</b></p>
<p>Step 2 is best done this way:</p>
<ul><li><b>Assume</b> it is true for <b>n=k</b></li>
<li><b>Prove</b> it is true for <b>n=k+1</b> (we can use the <b>n=k</b> case as a <b>fact</b>.)</li>
</ul>
<p>It is like saying <i><b>&quot;IF we can make a domino fall, WILL the next one fall?&quot;</b></i><b></b></p>
<p>&nbsp;</p>
<p>Step 2 can often be <i><b>tricky</b></i>, we may need to use imaginative tricks to make it work! </p>
<p>Like in this example:</p>
<div class="example">
<h3>Example: is 3<sup>n</sup>&minus;1 a multiple of 2?</h3>
<p><b>Is that true? Let us find out.</b></p>
<p>&nbsp;</p>
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
<p align="center"><b>3<sup>1</sup>&minus;1 = 3&minus;1 = 2 </b></p>
<p>Yes 2 is a multiple of 2. That was easy.</p>
<p align="center" class="large">3<sup>1</sup>&minus;1 is true</p>
<p class="larger">&nbsp;</p>
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
<p align="center" class="large">3<sup>k</sup>&minus;1 is true </p>
<p align="center">(Hang on! How do we know that?
We don't! <br />
It is an <b>assumption</b> ... that we treat <br />
<b>as a fact</b> for the rest of this example)</p>
<p class="larger">&nbsp;</p>
<p class="larger">Now, prove that <b>3<sup>k+1</sup>&minus;1</b> is a multiple of 2</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/mathematical-induction.svg" alt="mathematical induction a" /></p><p>&nbsp;</p>
<p><b>3<sup>k+1</sup></b> is also <b>3&times;3<sup>k</sup></b></p>
<p>And then split <b>3&times;</b> into <b>2&times;</b> and <b>1&times;</b></p>
<p>And each of these are multiples of 2</p>
<p class="larger">&nbsp;</p>
<div class="example2"></div>
<p>Because:</p>
<ul>
<li><b>2&times;3<sup>k</sup></b> is a multiple of 2 (we are multiplying by 2)</li>
<li><b>3<sup>k</sup>&minus;1 is true </b>(we said that in the assumption above)</li>
</ul>
<p>So:</p>
<p align="center"><span class="large">3<sup>k+1</sup>&minus;1 is true </span></p>
<p>DONE!</p>
</div>
<p>Did you see how we used the <b>3<sup>k</sup>&minus;1</b> case as being <b>true</b>, even though we had not proved it? That is OK, because we are relying on the <b>Domino Effect</b> ... </p>
<p align="center">... we are asking <b>if</b> any domino falls will the <b>next one</b> fall?</p>
<p>So we take it as a fact (temporarily) that the &quot;<b>n=k</b>&quot; domino falls (i.e. <b>3<sup>k</sup>&minus;1</b> is true), and see if that means the &quot;<b>n=k+1</b>&quot; domino will also fall.</p>
<h2>Tricks</h2>
<p>I said before that we often need to use imaginative tricks. </p>
<div class="center80">
<p>A common trick is to rewrite the <b>n=k+1</b> case into 2 parts:</p>
<ul>
<li>one part being the <b>n=k</b> case (which is assumed to be true)</li>
<li>the other part can then be checked to see if it is also true</li>
</ul>
</div>
<p>We did that in the example above, and here is another one:</p>
<div class="example">
<h3>Example: Adding up Odd Numbers </h3>
<p align="center" class="larger">1 + 3 + 5 + ... + (2n&minus;1) = n<sup>2</sup></p>
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
<p class="center large">1 = 1<sup>2</sup> is True</p>
<p class="larger">&nbsp;</p>
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
<p align="center" class="large"></p>
<p align="center"> <span class="large">1 + 3 + 5 + ... + (2k&minus;1) = k<sup>2</sup> is True</span><br>
(An assumption!)</p>
<p class="larger">Now, prove it is true for &quot;k+1&quot;</p>
<p align="center" class="larger">1 + 3 + 5 + ... + (2k&minus;1) + (2(k+1)&minus;1) = (k+1)<sup>2</sup> &nbsp; <b>?</b></p>
<p>&nbsp;</p>
<p>We know that <b>1 + 3 + 5 + ... + (2k&minus;1) = k<sup>2</sup></b> (the assumption above), so we can do a replacement for all but the last term:</p>
<p align="center" class="larger"><b>k<sup>2</sup></b> + (2(k+1)&minus;1) = (k+1)<sup>2</sup></p>
<p>Now expand all terms:</p>
<p align="center" class="larger">k<sup>2</sup> + 2k + 2 &minus; 1 = k<sup>2</sup> + 2k+1 </p>
<p>And simplify: </p>
<p align="center" class="larger">k<sup>2</sup> + 2k + 1 = k<sup>2</sup> + 2k + 1 </p>
<p align="center"><b>They are the same! So it is true.</b></p>
<p>So:</p>
<p class="center large">1 + 3 + 5 + ... + (2(k+1)&minus;1) = (k+1)<sup>2</sup> is True</p>
<p>DONE!</p>
</div>
<p>&nbsp;</p>
<h2>Your Turn</h2>
<p>Now, here are two more examples <b>for you to practice</b> on. </p>
<p>Please try them first yourself, then look at our solution below.</p>
<div class="example">
<h3>Example: Triangular Numbers</h3><p><a href="triangular-numbers.html">Triangular numbers</a> are numbers that can make a triangular dot pattern.</p><p class="center"><img src="../numbers/images/triangular-number-dots.svg" alt="triangular numbers" style="max-width: 100%;" /></p>
<p class="center large">Prove that the <b>n-th</b> triangular number is:</p>
<p class="center large"> T<sub>n</sub> = n(n+1)/2</p>
</div>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="../numbers/images/cube.gif" alt="cube 3x3x3" width="175" height="189" /></p>
<h3>Example: Adding up Cube Numbers</h3><p><a href="../numbers/cube-root.html">Cube numbers</a> are the cubes of the Natural Numbers</p>
<p class="center large">Prove that: </p>
<p class="center large">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + n<sup>3</sup> = &frac14;n<sup>2</sup>(n + 1)<sup>2</sup></p>
</div>
<p class="center">&nbsp;</p>
<p class="center">. . . . . . . . . . . . . . . . . .</p>
<p class="center">&nbsp;</p>
<p>&nbsp;</p>
<p>Please don't read the solutions until you have tried the questions yourself, these are the only questions on this page for you to practice on!</p>
<div class="example">
<h3>Example: Triangular Numbers</h3>
<p class="center"><img src="../numbers/images/triangular-number-dots.svg" alt="triangular numbers" width="80%" /></p>
<p class="large">Prove that the <b>n-th</b> triangular number is:</p>
<p class="center large"> T<sub>n</sub> = n(n+1)/2</p>
<p>&nbsp;</p>
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
<p class="center large">T<sub>1</sub> = 1 × (1+1) / 2 = 1 &nbsp;is True</p>
<p> </p>
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
<p class="center">T<sub>k</sub> = k(k+1)/2 &nbsp;is True (An assumption!)</p>
<p>Now, prove it is true for &quot;k+1&quot;</p>
<p class="center">T<sub>k+1</sub> = (k+1)(k+2)/2 &nbsp; ?</p>
<p> </p>
<p>We know that T<sub>k</sub> = k(k+1)/2 &nbsp;(the assumption above)</p>
<p class="center">T<sub>k+1</sub> has an extra row of (k + 1) dots</p>
<p>So, T<sub>k+1</sub> = T<sub>k</sub> + (k + 1)</p>
<p class="so">(k+1)(k+2)/2 = k(k+1) / 2 + (k+1)</p>
<p>Multiply all terms by 2:</p>
<p class="so">(k + 1)(k + 2) = k(k + 1) + 2(k + 1)</p>
<p class="so">(k + 1)(k + 2) = (k + 2)(k + 1)</p>
<p>They are the same! So it is <b>true</b>.</p>
<p>So:</p>
<p class="center large">T<sub>k+1</sub> = (k+1)(k+2)/2 &nbsp; is True</p>
<p>DONE!</p>
</div>
<p>&nbsp;</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="../numbers/images/cube.gif" alt="cube 3x3x3" width="175" height="189" /></p>
<h3>Example: Adding up Cube Numbers</h3>
<p class="center large">Prove that: </p>
<p class="center large">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + n<sup>3</sup> = &frac14;n<sup>2</sup>(n + 1)<sup>2</sup></p>
<p>&nbsp;</p>
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
<p class="center large">1<sup>3</sup> = &frac14; × 1<sup>2</sup> × 2<sup>2</sup> is True</p>
<p> </p>
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
<p class="center">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + k<sup>3</sup> = &frac14;k<sup>2</sup>(k + 1)<sup>2</sup> is True (An assumption!)</p>
<p>Now, prove it is true for &quot;k+1&quot;</p>
<p class="center">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + (k + 1)<sup>3</sup> = &frac14;(k + 1)<sup>2</sup>(k + 2)<sup>2</sup> ?</p>
<p> </p>
<p>We know that 1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + k<sup>3</sup> = &frac14;k<sup>2</sup>(k + 1)<sup>2</sup> (the assumption above), so we can do a replacement for all but the last term:</p>
<p class="center">&frac14;k<sup>2</sup>(k + 1)<sup>2</sup> + (k + 1)<sup>3</sup> = &frac14;(k + 1)<sup>2</sup>(k + 2)<sup>2</sup></p>
<p>Multiply all terms by 4:</p>
<p class="center">k<sup>2</sup>(k + 1)<sup>2</sup> + 4(k + 1)<sup>3</sup> = (k + 1)<sup>2</sup>(k + 2)<sup>2</sup></p>
<p>All terms have a common factor (k + 1)<sup>2</sup>, so it can be canceled:</p>
<p class="center">k<sup>2</sup> + 4(k + 1) = (k + 2)<sup>2</sup></p>
<p>And simplify:</p>
<p class="center">k<sup>2</sup> + 4k + 4 = k<sup>2</sup> + 4k + 4</p>
<p>They are the same! So it is true.</p>
<p>So:</p>
<p class="center large">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + (k + 1)<sup>3</sup> = &frac14;(k + 1)<sup>2</sup>(k + 2)<sup>2</sup> is True</p>
<p>DONE!</p>
</div>
<p>&nbsp;</p>
<div class="related"><a href="index.html">Algebra Index</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/mathematical-induction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:11 GMT -->
</html>