new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
253 lines
13 KiB
HTML
253 lines
13 KiB
HTML
<!doctype html>
|
||
<html lang="en"><!-- #BeginTemplate "../Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/mathematical-induction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:11 GMT -->
|
||
<head>
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Mathematical Induction</title>
|
||
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
|
||
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
|
||
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
|
||
<meta name="HandheldFriendly" content="true"/>
|
||
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
|
||
<link rel="stylesheet" type="text/css" href="../style3.css" />
|
||
<script src="../main3.js" type="text/javascript"></script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
<div class="bg">
|
||
<div id="stt"></div>
|
||
<div id="hdr"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
|
||
<div id="advText">Advanced</div>
|
||
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
|
||
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
|
||
<div id="adTopOuter" class="centerfull noprint">
|
||
<div id="adTop">
|
||
<script type="text/javascript">document.write(getAdTop());</script>
|
||
</div>
|
||
</div>
|
||
<div id="adHide">
|
||
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
||
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
||
<a href="../about-ads.html">About Ads</a></div>
|
||
</div>
|
||
<div id="menuWide" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(0));</script>
|
||
</div>
|
||
<div id="linkto">
|
||
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
|
||
</div>
|
||
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
|
||
<div id="menuSlim" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(1));</script>
|
||
</div>
|
||
<div id="menuTiny" class="menu">
|
||
<script type="text/javascript">document.write(getMenu(2));</script>
|
||
</div>
|
||
<div id="extra"></div>
|
||
</div>
|
||
<div id="content" role="main"><!-- #BeginEditable "Body" -->
|
||
|
||
<h1 align="center">Mathematical Induction</h1>
|
||
<div class="center80">
|
||
<p>Mathematical Induction is a special way of proving things. It has only 2 steps:</p>
|
||
<ul>
|
||
<li>Step 1. Show it is true for the <b>first one</b></li>
|
||
<li>Step 2. Show that if <b>any one</b> is true then the <b>next one</b> is true</li>
|
||
</ul>
|
||
<p>Then <b>all</b> are true</p>
|
||
</div><p> </p>
|
||
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/domino-effect.jpg" alt="Domino Effect" width="250" height="158" /></p>
|
||
<p class="larger">Have you heard of the "Domino Effect"?</p>
|
||
<ul>
|
||
<li>Step 1. The <b>first</b> domino falls</li>
|
||
<li>Step 2. When <b>any</b> domino falls, the <b>next</b> domino falls</li>
|
||
</ul>
|
||
<p>So ... <b>all dominos will fall!</b></p>
|
||
<p class="larger">That is how Mathematical Induction works.</p>
|
||
<p>In the world of numbers we say:</p>
|
||
<ul>
|
||
<li>Step 1. Show it is true for first case, usually <b>n=1</b></li>
|
||
<li>Step 2. Show that if <b>n=k</b> is true then <b>n=k+1</b> is also true</li>
|
||
</ul>
|
||
<h2>How to Do it</h2>
|
||
<p>Step 1 is usually easy, we just have to prove it is true for <b>n=1</b></p>
|
||
<p>Step 2 is best done this way:</p>
|
||
<ul><li><b>Assume</b> it is true for <b>n=k</b></li>
|
||
<li><b>Prove</b> it is true for <b>n=k+1</b> (we can use the <b>n=k</b> case as a <b>fact</b>.)</li>
|
||
</ul>
|
||
<p>It is like saying <i><b>"IF we can make a domino fall, WILL the next one fall?"</b></i><b></b></p>
|
||
<p> </p>
|
||
<p>Step 2 can often be <i><b>tricky</b></i>, we may need to use imaginative tricks to make it work! </p>
|
||
<p>Like in this example:</p>
|
||
<div class="example">
|
||
<h3>Example: is 3<sup>n</sup>−1 a multiple of 2?</h3>
|
||
<p><b>Is that true? Let us find out.</b></p>
|
||
<p> </p>
|
||
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
|
||
<p align="center"><b>3<sup>1</sup>−1 = 3−1 = 2 </b></p>
|
||
<p>Yes 2 is a multiple of 2. That was easy.</p>
|
||
<p align="center" class="large">3<sup>1</sup>−1 is true</p>
|
||
<p class="larger"> </p>
|
||
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
|
||
<p align="center" class="large">3<sup>k</sup>−1 is true </p>
|
||
<p align="center">(Hang on! How do we know that?
|
||
We don't! <br />
|
||
It is an <b>assumption</b> ... that we treat <br />
|
||
<b>as a fact</b> for the rest of this example)</p>
|
||
<p class="larger"> </p>
|
||
<p class="larger">Now, prove that <b>3<sup>k+1</sup>−1</b> is a multiple of 2</p>
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/mathematical-induction.svg" alt="mathematical induction a" /></p><p> </p>
|
||
<p><b>3<sup>k+1</sup></b> is also <b>3×3<sup>k</sup></b></p>
|
||
<p>And then split <b>3×</b> into <b>2×</b> and <b>1×</b></p>
|
||
<p>And each of these are multiples of 2</p>
|
||
<p class="larger"> </p>
|
||
<div class="example2"></div>
|
||
<p>Because:</p>
|
||
<ul>
|
||
<li><b>2×3<sup>k</sup></b> is a multiple of 2 (we are multiplying by 2)</li>
|
||
<li><b>3<sup>k</sup>−1 is true </b>(we said that in the assumption above)</li>
|
||
</ul>
|
||
<p>So:</p>
|
||
<p align="center"><span class="large">3<sup>k+1</sup>−1 is true </span></p>
|
||
<p>DONE!</p>
|
||
</div>
|
||
<p>Did you see how we used the <b>3<sup>k</sup>−1</b> case as being <b>true</b>, even though we had not proved it? That is OK, because we are relying on the <b>Domino Effect</b> ... </p>
|
||
<p align="center">... we are asking <b>if</b> any domino falls will the <b>next one</b> fall?</p>
|
||
<p>So we take it as a fact (temporarily) that the "<b>n=k</b>" domino falls (i.e. <b>3<sup>k</sup>−1</b> is true), and see if that means the "<b>n=k+1</b>" domino will also fall.</p>
|
||
<h2>Tricks</h2>
|
||
<p>I said before that we often need to use imaginative tricks. </p>
|
||
<div class="center80">
|
||
<p>A common trick is to rewrite the <b>n=k+1</b> case into 2 parts:</p>
|
||
<ul>
|
||
<li>one part being the <b>n=k</b> case (which is assumed to be true)</li>
|
||
<li>the other part can then be checked to see if it is also true</li>
|
||
</ul>
|
||
</div>
|
||
<p>We did that in the example above, and here is another one:</p>
|
||
<div class="example">
|
||
<h3>Example: Adding up Odd Numbers </h3>
|
||
<p align="center" class="larger">1 + 3 + 5 + ... + (2n−1) = n<sup>2</sup></p>
|
||
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
|
||
<p class="center large">1 = 1<sup>2</sup> is True</p>
|
||
<p class="larger"> </p>
|
||
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
|
||
<p align="center" class="large"></p>
|
||
<p align="center"> <span class="large">1 + 3 + 5 + ... + (2k−1) = k<sup>2</sup> is True</span><br>
|
||
(An assumption!)</p>
|
||
<p class="larger">Now, prove it is true for "k+1"</p>
|
||
<p align="center" class="larger">1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)<sup>2</sup> <b>?</b></p>
|
||
<p> </p>
|
||
<p>We know that <b>1 + 3 + 5 + ... + (2k−1) = k<sup>2</sup></b> (the assumption above), so we can do a replacement for all but the last term:</p>
|
||
<p align="center" class="larger"><b>k<sup>2</sup></b> + (2(k+1)−1) = (k+1)<sup>2</sup></p>
|
||
<p>Now expand all terms:</p>
|
||
<p align="center" class="larger">k<sup>2</sup> + 2k + 2 − 1 = k<sup>2</sup> + 2k+1 </p>
|
||
<p>And simplify: </p>
|
||
<p align="center" class="larger">k<sup>2</sup> + 2k + 1 = k<sup>2</sup> + 2k + 1 </p>
|
||
<p align="center"><b>They are the same! So it is true.</b></p>
|
||
<p>So:</p>
|
||
<p class="center large">1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)<sup>2</sup> is True</p>
|
||
|
||
<p>DONE!</p>
|
||
</div>
|
||
<p> </p>
|
||
<h2>Your Turn</h2>
|
||
<p>Now, here are two more examples <b>for you to practice</b> on. </p>
|
||
<p>Please try them first yourself, then look at our solution below.</p>
|
||
<div class="example">
|
||
|
||
|
||
<h3>Example: Triangular Numbers</h3><p><a href="triangular-numbers.html">Triangular numbers</a> are numbers that can make a triangular dot pattern.</p><p class="center"><img src="../numbers/images/triangular-number-dots.svg" alt="triangular numbers" style="max-width: 100%;" /></p>
|
||
<p class="center large">Prove that the <b>n-th</b> triangular number is:</p>
|
||
<p class="center large"> T<sub>n</sub> = n(n+1)/2</p>
|
||
</div>
|
||
<div class="example">
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="../numbers/images/cube.gif" alt="cube 3x3x3" width="175" height="189" /></p>
|
||
<h3>Example: Adding up Cube Numbers</h3><p><a href="../numbers/cube-root.html">Cube numbers</a> are the cubes of the Natural Numbers</p>
|
||
<p class="center large">Prove that: </p>
|
||
<p class="center large">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + n<sup>3</sup> = ¼n<sup>2</sup>(n + 1)<sup>2</sup></p>
|
||
</div>
|
||
<p class="center"> </p>
|
||
<p class="center">. . . . . . . . . . . . . . . . . .</p>
|
||
<p class="center"> </p>
|
||
<p> </p>
|
||
<p>Please don't read the solutions until you have tried the questions yourself, these are the only questions on this page for you to practice on!</p>
|
||
<div class="example">
|
||
<h3>Example: Triangular Numbers</h3>
|
||
<p class="center"><img src="../numbers/images/triangular-number-dots.svg" alt="triangular numbers" width="80%" /></p>
|
||
<p class="large">Prove that the <b>n-th</b> triangular number is:</p>
|
||
<p class="center large"> T<sub>n</sub> = n(n+1)/2</p>
|
||
<p> </p>
|
||
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
|
||
<p class="center large">T<sub>1</sub> = 1 × (1+1) / 2 = 1 is True</p>
|
||
<p> </p>
|
||
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
|
||
<p class="center">T<sub>k</sub> = k(k+1)/2 is True (An assumption!)</p>
|
||
<p>Now, prove it is true for "k+1"</p>
|
||
<p class="center">T<sub>k+1</sub> = (k+1)(k+2)/2 ?</p>
|
||
<p> </p>
|
||
<p>We know that T<sub>k</sub> = k(k+1)/2 (the assumption above)</p>
|
||
<p class="center">T<sub>k+1</sub> has an extra row of (k + 1) dots</p>
|
||
<p>So, T<sub>k+1</sub> = T<sub>k</sub> + (k + 1)</p>
|
||
<p class="so">(k+1)(k+2)/2 = k(k+1) / 2 + (k+1)</p>
|
||
<p>Multiply all terms by 2:</p>
|
||
<p class="so">(k + 1)(k + 2) = k(k + 1) + 2(k + 1)</p>
|
||
<p class="so">(k + 1)(k + 2) = (k + 2)(k + 1)</p>
|
||
<p>They are the same! So it is <b>true</b>.</p>
|
||
<p>So:</p>
|
||
<p class="center large">T<sub>k+1</sub> = (k+1)(k+2)/2 is True</p>
|
||
<p>DONE!</p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="example">
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="../numbers/images/cube.gif" alt="cube 3x3x3" width="175" height="189" /></p>
|
||
|
||
<h3>Example: Adding up Cube Numbers</h3>
|
||
<p class="center large">Prove that: </p>
|
||
<p class="center large">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + n<sup>3</sup> = ¼n<sup>2</sup>(n + 1)<sup>2</sup></p>
|
||
<p> </p>
|
||
<p class="larger"><b>1.</b> Show it is true for <b>n=1</b></p>
|
||
<p class="center large">1<sup>3</sup> = ¼ × 1<sup>2</sup> × 2<sup>2</sup> is True</p>
|
||
<p> </p>
|
||
<p class="larger"><b>2.</b> Assume it is true for <b>n=k</b></p>
|
||
<p class="center">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + k<sup>3</sup> = ¼k<sup>2</sup>(k + 1)<sup>2</sup> is True (An assumption!)</p>
|
||
<p>Now, prove it is true for "k+1"</p>
|
||
<p class="center">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + (k + 1)<sup>3</sup> = ¼(k + 1)<sup>2</sup>(k + 2)<sup>2</sup> ?</p>
|
||
<p> </p>
|
||
<p>We know that 1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + k<sup>3</sup> = ¼k<sup>2</sup>(k + 1)<sup>2</sup> (the assumption above), so we can do a replacement for all but the last term:</p>
|
||
<p class="center">¼k<sup>2</sup>(k + 1)<sup>2</sup> + (k + 1)<sup>3</sup> = ¼(k + 1)<sup>2</sup>(k + 2)<sup>2</sup></p>
|
||
<p>Multiply all terms by 4:</p>
|
||
<p class="center">k<sup>2</sup>(k + 1)<sup>2</sup> + 4(k + 1)<sup>3</sup> = (k + 1)<sup>2</sup>(k + 2)<sup>2</sup></p>
|
||
<p>All terms have a common factor (k + 1)<sup>2</sup>, so it can be canceled:</p>
|
||
<p class="center">k<sup>2</sup> + 4(k + 1) = (k + 2)<sup>2</sup></p>
|
||
<p>And simplify:</p>
|
||
<p class="center">k<sup>2</sup> + 4k + 4 = k<sup>2</sup> + 4k + 4</p>
|
||
<p>They are the same! So it is true.</p>
|
||
<p>So:</p>
|
||
<p class="center large">1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + (k + 1)<sup>3</sup> = ¼(k + 1)<sup>2</sup>(k + 2)<sup>2</sup> is True</p>
|
||
<p>DONE!</p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="related"><a href="index.html">Algebra Index</a></div>
|
||
<!-- #EndEditable --></div>
|
||
<div id="adend" class="centerfull noprint">
|
||
<script type="text/javascript">document.write(getAdEnd());</script>
|
||
</div>
|
||
<div id="footer" class="centerfull noprint">
|
||
<script type="text/javascript">document.write(getFooter());</script>
|
||
</div>
|
||
<div id="copyrt">
|
||
Copyright © 2017 MathsIsFun.com
|
||
</div>
|
||
|
||
<script type="text/javascript">document.write(getBodyEnd());</script>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/mathematical-induction.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:11 GMT -->
|
||
</html>
|